Algebraic independence of some values of the exponential function. (English. Russian original) Zbl 0295.10027

Math. Notes 15, 391-398 (1974); translation from Mat. Zametki 15, 661-672 (1974).


11J81 Transcendence (general theory)
11R06 PV-numbers and generalizations; other special algebraic numbers; Mahler measure
Full Text: DOI


[1] A. O. Gel’fond, Transcendental and Algebraic Numbers, Dover, New York (1960).
[2] M. Waldschmidt, ?Independance algebrique des valeurs de la fonction exponentielle,? Bull. Soc. Math. France,99, No. 4, 285-304 (1971). · Zbl 0224.10033
[3] A. A. Shmelev, ?On the problem of algebraic independence of algebraic powers of algebraic numbers,? Matem. Zametki,11, No. 6, 635-644 (1972). · Zbl 0254.10029
[4] A. O. Gel’fond, ?On algebraic independence of transcendental numbers of certain classes,? Usp. Matem. Nauk,4, No. 5, 14-48 (1949).
[5] A. O. Gel’fond and N. I. Fel’dman, ?On a measure of the relative transcendence of certain numbers,? Izv. Akad. Nauk SSSR, Ser. Matem.,14, 493-500 (1950).
[6] T. Shorey, ?On a theorem of Ramachandra,? Acta Arithm.,20, 215-221 (1972). · Zbl 0212.07203
[7] S. Lang, Introduction to Transcendental Numbers, Addison-Wesley, Reading, Mass. (1966). · Zbl 0144.04101
[8] N. I. Fel’dman, ?Refinement of an estimate for a linear form in the logarithms of algebraic numbers,? Matem. Sb., Novaya Ser.,77, No. 3, 423-436 (1968).
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.