×

zbMATH — the first resource for mathematics

Groups with a (B,N)-pair of rank 2. I. (English) Zbl 0295.20048

MSC:
20G40 Linear algebraic groups over finite fields
20D05 Finite simple groups and their classification
PDF BibTeX XML Cite
Full Text: DOI EuDML
References:
[1] Abe, E.: Finite groups admitting Bruhat decompositions of typeA n, Tôhoku Math. J.16, 130-141 (1964). · Zbl 0128.25203 · doi:10.2748/tmj/1178243699
[2] Alperin, J., Gorenstein, D.: The multiplicators of certain simple groups. Proc. Amer. Math. Soc.17, 515-519 (1966). · Zbl 0151.02002 · doi:10.1090/S0002-9939-1966-0193141-8
[3] Bourbaki, N.: Groupes et algèbres de Lie. Chap. 4, 5, 6, Fascicule XXXIV. Éléments de mathematique. Paris: Hermann 1968.
[4] Brauer, R., Nesbitt, C.: On modular characters of groups. Ann. Math.42, 556-590 (1941). · JFM 67.0073.02 · doi:10.2307/1968918
[5] Carter, R.: Simple groups and simple Lie algebras. J. London Math. Soc.40, 193-240 (1965). · Zbl 0232.20017 · doi:10.1112/jlms/s1-40.1.193
[6] Chevalley, C.: Sur certains groupes simples. Tôhoku Math. J. (2),7, 14-66 (1955). · Zbl 0066.01503 · doi:10.2748/tmj/1178245104
[7] Curtis, C.: Central extensions of groups of Lie type. Journal für Math.220, 174-185 (1965). · Zbl 0137.25701
[8] Feit, W., Higman, G.: The nonexistence of certain generalized polygons. J. Alg.1, 114-131 (1964). · Zbl 0126.05303 · doi:10.1016/0021-8693(64)90028-6
[9] Fong, P.: A characterization of the finite simple groupsPSp(4,q),G 2(q),D 4 2 (q), II. Nagoya Math. J.39, 39-79 (1970). · Zbl 0188.06501
[10] Fong, P., Wong, W.: A characterization of the finite simple groupsPSp(4,q),G 2(q),D 4 2 (q), I. Nagoya Math. J.36, 143-184 (1969). · Zbl 0188.06402
[11] Glauberman, G.: Central elements in core-free groups. J. Algebra4, 403-420 (1966). · Zbl 0145.02802 · doi:10.1016/0021-8693(66)90030-5
[12] Griess, R.L.: Schur multipliers of the known simple groups. U. of Chicago Thesis, 1971. · Zbl 0263.20008
[13] Hall, P., Higman, G.: On thep-length ofp-solvable groups and reduction theorems for Burnside’s problem. Proc. London Math. Soc.3, 1-42 (1956). · Zbl 0073.25503 · doi:10.1112/plms/s3-6.1.1
[14] Hering, C., Kantor, W., Seitz, G.: Finite groups having a splitBN-pair of rank 1. J. Algebra20, 435-475 (1972). · Zbl 0244.20003 · doi:10.1016/0021-8693(72)90068-3
[15] Hertzig, D.: Forms of algebraic groups. Proc. Amer. Math. Soc.12, 657-660 (1961). · Zbl 0119.03204 · doi:10.1090/S0002-9939-1961-0125181-4
[16] Higman, D.G.: Finite permutation groups of rank 3. Math. Z.86, 145-156 (1964). · Zbl 0122.03205 · doi:10.1007/BF01111335
[17] Higman, D.G., McLaughlin, J.: GeometricABA-groups. Illinois J. Math.5, 382-397 (1961). · Zbl 0104.14702
[18] Kantor, W., Seitz, G.: Some results on 2-transitive groups. Inventiones math.13, 125-142 (1971). · Zbl 0217.07401 · doi:10.1007/BF01390097
[19] Mark, J.C.: On the modular representations of the groupGLH(3,p). U. of Toronto Thesis, 1939.
[20] Phan, K.W.: A characterization of the unitary groupsPSU(4,q 2),q odd. J. Algebra17, 132-148 (1971). · Zbl 0218.20044 · doi:10.1016/0021-8693(71)90049-4
[21] Ree, R.: A family of simple groups associated with the Lie algebra of type (F 4). Amer. J. Math.83, 401-420 (1961). · Zbl 0104.24704 · doi:10.2307/2372886
[22] Ree, R.: A family of simple groups associated with the Lie algebra of type (G 2). Amer. J. Math.83, 432-462 (1961). · Zbl 0104.24705 · doi:10.2307/2372888
[23] Richen, F.: Modular representations of splitBN pairs. Trans. Amer. Math. Soc.140, 435-460 (1969). · Zbl 0181.03801
[24] Schur, I.: Untersuchungen über die Darstellungen der endlichen Gruppen durch gebrochene lineare Substitutionen. J. Reine Angew. Math.132, 85-137 (1907). · JFM 38.0174.02 · doi:10.1515/crll.1907.132.85
[25] Shult, E.: On the fusion of an involution in its centralizer. (To appear.)
[26] Sims, C.: Computational methods in the study of permutation groups, p. 169-183. Pergamon: Proc. Conference Oxford 1970. · Zbl 0215.10002
[27] Steinberg, R.: Variations on a theme of Chevalley. Pacific J. Math.9, 875-891 (1959). · Zbl 0092.02505
[28] Steinberg, R.: Automorphisms of finite linear groups. Canadian J. Math.12, 606-615 (1960). · Zbl 0097.01703 · doi:10.4153/CJM-1960-054-6
[29] Steinberg, R.: Representations of algebraic groups. Nagoya Math. J.22, 33-56 (1963). · Zbl 0271.20019
[30] Suzuki, M.: A new type of simple groups of finite order. Proc. Nat. Acad. Sci.46, 868-870 (1960). · Zbl 0093.02301 · doi:10.1073/pnas.46.6.868
[31] Suzuki, M.: On a class of doubly transitive groups. Ann. Math.75, 105-145 (1965). · Zbl 0106.24702 · doi:10.2307/1970423
[32] Suzuki, M.: On characterizations of linear groups V. (To appear.)
[33] Thomas, G.: A characterization of the groupsG 2(2 n ). J. of Algebra13, 87-118 (1969). · Zbl 0179.32501 · doi:10.1016/0021-8693(69)90008-8
[34] Thomas, G.: A characterization of the Steinberg groupsD 4 2 (q 3),q=2 n . J. of Algebra14, 373-385 (1969). · Zbl 0194.04102 · doi:10.1016/0021-8693(70)90112-2
[35] Tits, J.: Les formes réelles des groupes de typeE 6, Séminaire Bourbaki. Exposé162 (1958).
[36] Tits, J.: Sur la trialité et certains groupes qui s’en déduisent. Publ. Math. (I.H.E.S.)2, 14-60 (1959). · Zbl 0088.37204
[37] Tits, J.: Groupes semi-simple isotropes, Colloque sur la theorie des groupes algebriques. Brussels, 1962. · Zbl 0154.02601
[38] Tits, J.: Théorème de Bruhat et sousgroupes paraboliques. C.R. Acad. Sci.254, 2910-2912 (1962). · Zbl 0105.02201
[39] Tits, J.: Géométries polyédriques finies. Rend. Math.23, 156-165 (1964). · Zbl 0199.24201
[40] Tits, J.: Buildings andBN-pairs of spherical type. (To appear.) · Zbl 0295.20047
[41] Walter, J.: Finite groups with abelian Sylow 2-subgroups of order 8. Inventiones math.2, 332-376 (1967). · Zbl 0153.03603 · doi:10.1007/BF01428899
[42] Zsigmondy, K.: Zur Theorie der Potenzreste. Monatshefte Math. Phys.3, 265-284 (1892). · JFM 24.0176.02 · doi:10.1007/BF01692444
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.