×

The spectra of composition operators on H\(^p\). (English) Zbl 0295.47003


MSC:

47A10 Spectrum, resolvent
46J15 Banach algebras of differentiable or analytic functions, \(H^p\)-spaces
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] {\scJ. G. Caughran and H. J. Schwartz}, Spectra of compact composition operators, to appear. · Zbl 0309.47003
[2] Deddens, J., Analytic Toeplitz and composition operators, Can. J. math., 24, 859-865, (1972) · Zbl 0273.47016
[3] Denjoy, M.A., Sur l’itĂ©ration des fonctions analytiques, C. R. acad. sci. Paris, 182, 255-257, (1926) · JFM 52.0309.04
[4] Duren, P.L., Theory of Hp spaces, (1970), Academic Press New York · Zbl 0215.20203
[5] Gabriel, R.M., Some results concerning the moduli of regular functions along curves of certain types, (), 121-127 · JFM 54.0331.03
[6] Kamowitz, H., The spectra of endomorphisms of the disc algebra, Pacific J. math., 46, 433-440, (1973) · Zbl 0261.46058
[7] Kamowitz, H.; Scheinberg, S., The spectrum of automorphisms of Banach algebras, J. functional analysis, 4, 268-276, (1969) · Zbl 0182.17703
[8] Karlin, S.; MacGregor, J., Embedding iterates of analytic functions, Trans. amer. math. soc., 132, 137-145, (1968) · Zbl 0157.12502
[9] Nordgren, E.A., Composition operators, Can. J. math., 20, 442-449, (1968) · Zbl 0161.34703
[10] Ryff, J.V., Subordinate Hp functions, Duke math. J., 33, 347-354, (1966) · Zbl 0148.30205
[11] Scheinberg, S., Problems in analysis, (), 319-323
[12] Scheinberg, S., The spectrum of an automorphism, Bull. amer. math. soc., 78, 621-623, (1972) · Zbl 0257.46057
[13] Shapiro, J.H.; Taylor, P.D., Compact, nuclear, and Hilbert-Schmidt composition operators on H2, Indiana univ. math. J., 23, 471-496, (1973) · Zbl 0276.47037
[14] Wolff, J.; Wolff, J., Sur l’iteration des fonctions, C. R. acad. sci. Paris, C. R. acad. sci. Paris, 182, 200-201, (1926) · JFM 52.0309.03
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.