×

A nonmetric variety of linear factor analysis. (English) Zbl 0295.62064


MSC:

62H25 Factor analysis and principal components; correspondence analysis
91E99 Mathematical psychology
62P15 Applications of statistics to psychology
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Barlow, R. E., Bartholomew, D. J., Bremner, J. M., and Brunk, H. D.Statistical inference under order restrictions. New York: Wiley, 1972. · Zbl 0246.62038
[2] Bennett, J. F. Determination of the number of independent parameters of a score matrix from the examination of rank orders.Psychometrika, 1956,21, 383–393. · Zbl 0073.36001
[3] Birkhoff, G., and MacLane, S.A survey of modern algebra. New York: Macmillan, 1953, (revised edition). · Zbl 0052.25402
[4] Carroll, J. D. Polynomial factor analysis.Proceedings of the 77th Annual Convention of the American Psychological Association, 1969,4, 103–104. (Abstract)
[5] Carroll, J. D., & Chang, J.-J. Non-parametric multidimensional analysis of paired-comparisons data.Paper presented at the joint meeting of the Psychometric and Psychonomic Societies, Niagara Falls, October 1964.
[6] Coombs, C. H.A theory of data. New York: Wiley, 1964.
[7] Coombs, C. H., and Kao, R. C. Nonmetric factor analysis.Engineering Research Bulletin No.38, University of Michigan Press, Ann Arbor, 1955.
[8] Coombs, C. H., and Kao, R. C. On a connection between factor analysis and multidimensional unfolding.Psychometrika, 1960,25, 219–231. · Zbl 0093.16101
[9] Eckart, C., and Young, G. The approximation of one matrix by another of lower rank.Psychometrika, 1936,1, 211–218. · JFM 62.1075.02
[10] Harman, H. H.Modern factor analysis. Chicago: University of Chicago Press, 1967, (revised edition). · Zbl 0161.39805
[11] Kelley, H. J. Method of gradients. In G. Leitman (Ed.),Optimization techniques. New York: Academic Press, 1962.
[12] Klemmer, E. T., and Shrimpton, N. Preference scaling via a modification of Shepard’s proximity analysis method.Human Factors, 1963,5, 163–168.
[13] Kruskal, J. B. Multidimensional scaling by optimizing goodness of fit to a nonmetric hypothesis.Psychometrika, 1964,29, 1–27. (a). · Zbl 0123.36803
[14] Kruskal, J. B. Nonmetric multidimensional scaling: A numerical method.Psychometrika, 1964,29, 28–42. (b) · Zbl 0123.36804
[15] Kruskal, J. B. Analysis of factorial experiments by estimating monotone transformations of the data.Journal of the Royal Statistical Society, Series B, 1965,27, 251–263.
[16] Kruskal, J. B. Monotone regression: Continuity and differentiability properties.Psychometrika, 1971,36, 57–62. · Zbl 0218.62078
[17] Kruskal, J. B., and Carroll, J. D. Geometric models and badness-of-fit functions. In P. R. Krishnaiah (Ed.),Multivariate analysis II. New York: Academic Press, 1969. Pp. 639–670.
[18] Lazarsfeld, P. F. Latent structure analysis. In S. Koch (Ed.),Psychology: A study of a science, Vol. 3. New York: McGraw-Hill, 1959. Pp. 476–543.
[19] Levine, M. V. Transformations that render curves parallel.Journal of Mathematical Psychology, 1970,7, 410–443. · Zbl 0205.07402
[20] Levine, M. V. Transforming curves into curves with the same shape.Journal of Mathematical Psychology, 1972,9, 1–16. · Zbl 0233.26019
[21] Lingoes, J. C. A general survey of the Guttman-Lingoes nonmetric program series. In R. N. Shepard, A. K. Romney, and S. Nerlove (Eds.),Multidimensional scaling: Theory and application in the behavioral sciences (Volume I, Theory). New York: Seminar Press, 1972. Pp. 49–68.
[22] Lingoes, J. C., and Guttman, L. Nonmetric factor analysis: A rank reducing alternative to linear factor analysis.Multivariate Behavioral Research, 1967,2, 485–505.
[23] McDonald, R. P. A general approach to nonlinear factor analysis.Psychometrika, 1962,27, 397–415.
[24] McDonald, R. P. Nonlinear factor analysis.Psychometric Monograph No. 15, 1967. · Zbl 0183.24602
[25] Rosen, J. B. Gradient projection method for non-linear programing.Journal SIAM, 1960,8, 181–217. · Zbl 0099.36405
[26] Shepard, R. N. The analysis of proximities: Multidimensional scaling with an unknown distance function (I & II).Psychometrika, 1962,27, 125–139, 219–246. · Zbl 0129.12103
[27] Shepard, R. N. Extracting latent structure from behavioral data. InProceedings of the 1964 symposium on digital computing. Bell Telephone Laboratories, May, 1964.
[28] Shepard, R. N. Approximation to uniform gradients of generalization by monotone transformations of scale. In D. Mostofsky (Ed.),Stimulus generalization. Stanford, California: Stanford University Press, 1965. Pp. 94–110.
[29] Shepard, R. N. Metric structures in ordinal data.Journal of Mathematical Psychology, 1966,3, 287–315.
[30] Shepard, R. N. A taxonomy of some principal types of data and of multidimensional methods for their analysis. In R. N. Shepard A. K. Romney, and S. Nerlove (Eds.),Multidimensional scaling: Theory and applications in the behavioral sciences (Volume I, Theory). New York: Seminar Press, 1972. Pp. 21–47.
[31] Shepard, R. N., and Carroll, J. D. Parametric representation of nonlinear data structures. In P. R. Krishnaiah (Ed.),Multivariate Analysis. New York: Academic Press, 1966. PP. 561–592.
[32] Shepard, R. N., and Kruskal, J. B. Nonmetric methods for scaling and for factor analysis,American Psychologist, 1964,19, 557–558. (abstract)
[33] Thurstone, L. L.Multiple factor analysis. Chicago: University of Chicago Press, 1947. · Zbl 0029.22203
[34] Torgerson, W. S.Theory and methods of scaling. New York: Wiley, 1958.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.