×

zbMATH — the first resource for mathematics

Representation of structure in similarity data: problems and prospects. (English) Zbl 0295.92024

MSC:
91E99 Mathematical psychology
62P15 Applications of statistics to psychology
15B57 Hermitian, skew-Hermitian, and related matrices
Software:
TORSCA
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Abelson, R. P., and Tukey, J. W. Efficient conversion of nonmetric information into metric information.Proceedings of the American Statistical Association Meetings, Social Statistics Section, 1959, 226–230.
[2] Anderson, J. R., and Bower, G. H. Human associative memory. Washington, D. C.: V. H. Winston & Sons, 1973.
[3] Arabie, P. Concerning Monte Carlo evaluations of nonmetric multidimensional scaling algorithms.Psychometrika, 1973,38, 607–608. · doi:10.1007/BF02291498
[4] Arabie, P. and Boorman, S. A. Multidimensional scaling of measures of distance between partitions.Journal of Mathematical Psychology, 1973,10, 148–203. · Zbl 0263.92003 · doi:10.1016/0022-2496(73)90012-6
[5] Arabie, P. and Shepard, R. N. Representation of similarities as additive combinations of discrete overlapping properties. Presented at the Mathematical Psychology Meeting in Montreal, August, 1973.
[6] Arnold, J. B. A multidimensional scaling study of semantic distance.Journal of Experimental Psychology Monograph, 1971,90, 349–372. · doi:10.1037/h0031565
[7] Attneave, F. Dimensions of similarity.American Journal of Psychology, 1950,63, 516–556. · doi:10.2307/1418869
[8] Beals, R., Krantz, D. H., and Tversky, A. Foundations of multidimensional scaling.Psychological Review, 1968,75, 127–142. · Zbl 0235.92010 · doi:10.1037/h0025470
[9] Bennett, R. S. The intrinsic dimensionality of signal collections. Doctoral dissertation, The Johns Hopkins University, 1965. University Microfilms, Inc., Ann Arbor, Michigan.
[10] Bennett, R. S. The intrinsic dimensionality of signal collections.IEEE Transactions on Information Theory, 1969, Vol. IT-15, No. 5, 517–525. · Zbl 0176.49604 · doi:10.1109/TIT.1969.1054365
[11] Blank, A. A. Axiomatics of binocular vision: The foundations of metric geometry in relation to space perception.Journal of the Optical Society of America, 1958,48, 328–334. · doi:10.1364/JOSA.48.000328
[12] Blank, A. A. The Luneburg theory of binocular space perception. In S. Koch (Ed.),Psychology: A study of a science. New York: McGraw-Hill, 1959. Pp. 395–426.
[13] Blumenthal, L. M.Theory and applications of distance geometry. Oxford: Clarendon Press, 1953. · Zbl 0050.38502
[14] Boyd, J. P. Information distance for discrete structures. In R. N. Shepard, A. K. Romney, & S. B. Nerlove (Eds.),Multidimensional scaling: Theory and applications in the behavioral sciences, Vol. I. New York: Seminar Press, 1972. Pp. 213–223.
[15] Busemann, H.The geometry of geodesics. New York: Academic Press, 1955. · Zbl 0112.37002
[16] Carroll, J. D. Individual differences and multidimensional scaling. In R. N. Shepard, A. K. Romney, & S. B. Nerlove (Eds.),Multidimensional scaling: Theory and applications in the behavioral sciences, Vol. I. New York: Seminar Press, 1972. (a) Pp. 105–155.
[17] Carroll, J. D. Algorithms for rotation and interpretation of dimensions and for configuration matching. Bell Telephone Laboratories, 1972. (b) (Multilithed handout prepared for the workshop on multidimensional scaling, held at the University of Pennsylvania in June, 1972.)
[18] Carroll, J. D., and Chang, J.-J. Analysis of individual differences in multidimensional scaling via an N-way generalization of ”Eckart-Young” decomposition.Psychometrika, 1970,35, 283–319. · Zbl 0202.19101 · doi:10.1007/BF02310791
[19] Chang, J.-J., and Shepard, R. N. Exponential fitting in the proximity analysis of confusion matrices. Presented at the annual meeting of the Eastern Psychological Association, New York, April 14, 1966.
[20] Clark, H. H. Linguistic processes in deductive reasoning.Psychological Review, 1969,76, 387–404. · doi:10.1037/h0027578
[21] Clark, H. H. Word associations and linguistic theory. In J. Lyons (Ed.),New horizons in linguistics. Baltimore, Maryland: Penguin Books, 1970. Pp. 271–286.
[22] Coombs, C.A theory of data. New York: Wiley, 1964.
[23] Cross, D. V. Metric properties of multidimensional stimulus generalization. In D. I. Mostofsky (Ed.),Stimulus generalization. Stanford, Calif.: Stanford University Press, 1965. Pp. 72–93.
[24] Cunningham, J. P. On finding an optimal tree realization of a proximity matrix. Presented at the mathematical psychology meeting, Ann Arbor, Michigan, August 29, 1974.
[25] Cunningham, J. P., and Shepard, R. N. Monotone mapping of similarities into a general metric space.Journal of Mathematical Psychology, 1974,11, (in press). · Zbl 0296.92016
[26] Degerman, R. L. Multidimensional analysis of complex structure: Mixtures of class and quantitative variation.Psychometrika, 1970,35, 475–491. · Zbl 0222.92012 · doi:10.1007/BF02291821
[27] Ekman, G. Dimensions of color vision.Journal of Psychology, 1954,38, 467–474. · doi:10.1080/00223980.1954.9712953
[28] Fillenbaum, S., and Rapoport, A.Structures in the subjective lexicon, New York: Academic Press, 1971.
[29] Foley, J. M. The size-distance relation and the intrinsic geometry of visual space.Vision Research, 1972,12, 323–332. · doi:10.1016/0042-6989(72)90121-6
[30] Greenberg, J. H.Language universals. The Hague: Mouton, 1966.
[31] Guttman, L. A new approach to factor analysis: The radex. In P. F. Lazarsfeld (Ed.),Mathematical thinking in the social sciences. Glencoe, Illinois: Free Press, 1954. Pp. 258–348.
[32] Guttman, L. A generalized simplex for factor analysis.Psychometrika, 1955,20, 173–192. · Zbl 0068.13402 · doi:10.1007/BF02289015
[33] Guttman, N., and Kalish, H. I. Discriminability and stimulus generalization.Journal of Experimental Psychology, 1956,51, 79–88. · doi:10.1037/h0046219
[34] Halle, M. On the bases of phonology. In J. A. Fodor and J. J. Katz (Eds.),The structure of language. Englewood Cliffs, N. J.: Prentice-Hall, 1964. Pp. 324–333.
[35] Harshman, R. A. Foundations of the parafac procedure: Models and conditions for an explanatory multi-modal factor analysis. Unpublished doctoral dissertation, University of California at Los Angeles, 1970.
[36] Haviland, S. E., and Clark, E. V. ’This man’s father is my father’s son’: A study of the acquisition of English kin terms.Journal of Child Language, 1974,1, 23–47. · doi:10.1017/S0305000900000064
[37] Helm, C. E. Multidimensional ratio scaling analysis of perceived color relations.Journal of the Optical Society of America, 1964,54, 256–262. · doi:10.1364/JOSA.54.000256
[38] Hyman, R., and Well, A. Judgments of similarity and spatial models.Perception and Psychophysics, 1967,2, 233–248. · doi:10.3758/BF03212473
[39] Hyman, R., and Well, A. Perceptual separability and spatial models.Perception and Psychophysics, 1968,3, 161–165. · doi:10.3758/BF03212721
[40] Indow, T. Applications of multidimensional scaling in perception. In E. C. Carterette and M. P. Friedman (Eds.),Handbook of perception, Vol. 2. New York: Academic Press, in press. · Zbl 0928.91053
[41] Jardine, N., and Sibson, R.Mathematical taxonomy. New York: Wiley, 1971.
[42] Johnson, S. C. Hierarchical clustering schemes.Psychometrika, 1967,32, 241–254. · Zbl 1367.62191 · doi:10.1007/BF02289588
[43] Klahr, D. A Monte Carlo investigation of the statistical significance of Kruskal’s nonmetric scaling procedure.Psychometrika, 1969,34, 319–330. · doi:10.1007/BF02289360
[44] Koopman, R. F., and Cooper, M. Some problems with Minkowski distance models in multidimensional scaling. Presented at the annual meeting of the Psychometric Society, Stanford University, March 28, 1974.
[45] Kruskal, J. B. Multidimensional scaling by optimizing goodness of fit to a nonmetric hypothesis.Psychometrika, 1964,29, 1–27. (a) · Zbl 0123.36803 · doi:10.1007/BF02289565
[46] Kruskal, J. B. Nonmetric multidimensional scaling: A numerical method.Psychometrika, 1964,29, 28–42. (b) · Zbl 0123.36804
[47] Kruskal, J. B. Linear transformation of multivariate data to reveal clustering. In R. N. Shepard, A. K. Romney, & S. B. Nerlove (Eds.),Multidimensional scaling: Theory and applications in the behavioral sciences. Vol I. New York: Seminar Press, 1972. Pp. 179–191.
[48] Kruskal, J. B. Multidimensional scaling and other methods for discovering structure. In A. J. Ralston, H. S. Wilf, and K. Enslein, (Eds.),Statistical methods for digital computers. New York: Wiley, in press.
[49] Levelt, W. J. M., Van de Geer, J. P., and Plomp, R. Triadic comparisons of musical intervals.British Journal of Mathematical and Statistical Psychology, 1966,19, 163–179.
[50] Lévi-Strauss, C.The savage mind. Chicago: University of Chicago Press, 1967.
[51] Liberman, A. M., Cooper, F. S., Shankweiler, D. P., and Studdert-Kennedy, M. Perception of the speech code.Psychological Review, 1967,74, 431–461. · doi:10.1037/h0020279
[52] Lingoes, J. C. A general survey of the Guttman-Lingoes nonmetric program series. In R. N. Shepard, A. K. Romney, & S. B. Nerlove (Eds.),Multidimensional scaling: Theory and applications in the behavioral sciences. Vol. I. New York: Seminar Press, 1972.
[53] Luneburg, R. K.Mathematical analysis of binocular vision. Princeton, N. J.: Princeton University Press, 1947. · Zbl 0038.40103
[54] Luneburg, R. K. The metric of binocular visual space.Journal of Optical Society of America, 1950,40, 637–642. · doi:10.1364/JOSA.40.000627
[55] Miller, G., and Nicely, P. E. An analysis of perceptual confusions among some English consonants.Journal of the Acoustical Society of America, 1955,27, 338–352. · doi:10.1121/1.1907526
[56] Osgood, C. E., Suci, G. J., and Tannenbaum, P. H.The measurement of meaning. Urbana, Ill.: University of Illinois Press, 1957.
[57] Peters, R. W. Dimensions of perception of consonants.Journal of the Acoustical Society of America, 1963,35, 1985–1989. · doi:10.1121/1.1918876
[58] Quillian, M. R. Semantic memory. In M. Minsky (Ed.),Semantic information processing. Cambridge, Mass.: M.I.T. Press, 1968.
[59] Rips, L. J., Shoben, E. J., and Smith, E. E. Semantic distance and the verification of semantic relations.Journal of Verbal Learning and Verbal Behavior, 1973,12, 1–20. · doi:10.1016/S0022-5371(73)80056-8
[60] Romney, A. K., and D’Andrade, R. G. Cognitive aspects of English kinship terms.American Anthropologist, 1964,66, 146–170. · doi:10.1525/aa.1964.66.3.02a00870
[61] Rumelhart, D. E., and Abrahamson, A. A. A model for analogical reasoning.Cognitive Psychology, 1973,5, 1–28. · doi:10.1016/0010-0285(73)90023-6
[62] Rumelhart, D. E., Lindsay, P. H., and Norman, D. A. A process model for long-term memory. In E. Tulving and W. Donaldson (Eds.),Organization of memory. New York: Academic Press, 1972.
[63] Rund, H.The differential geometry of Finsler space. Berlin: Springer-Verlag, 1959. · Zbl 0087.36604
[64] Shepard, R. N. Multidimensional scaling of concepts based upon sequences of restricted associative responses.American Psychologist, 1957,12, 440–441. (abstract) (a)
[65] Shepard, R. N. Stimulus and response generalization: A stochastic model relating generalization to distance in psychological space.Psychometrika, 1957,22, 325–345. (b) · Zbl 0088.12906 · doi:10.1007/BF02288967
[66] Shepard, R. N. Stimulus and response generalization: Deduction of the generalization gradient from a trace model.Psychological Review, 1958,65, 242–256. (a) · doi:10.1037/h0043083
[67] Shepard, R. N. Stimulus and response generalization: Tests of a model relating generalization to distance in psychological space.Journal of Experimental Psychology, 1958,55, 509–523. (b) · doi:10.1037/h0042354
[68] Shepard, R. N. Similarity of stimuli and metric properties of behavioral data. In H. Gulliksen and S. Messick (Eds.),Psychological scaling: Theory and applications. New York: Wiley, 1960. Pp. 33–43.
[69] Shepard, R. N. The analysis of proximities: Multidimensional scaling with an unknown distance function. I.Psychometrika, 1962,27, 125–140. (a) · Zbl 0129.12103 · doi:10.1007/BF02289630
[70] Shepard, R. N. The analysis of proximities: Multidimensional scaling with an unknown distance function. II.Psychometrika, 1962,27, 219–246. (b) · Zbl 0129.12103 · doi:10.1007/BF02289621
[71] Shepard, R. N. Analysis of proximities as a technique for the study of information processing in man.Human Factors, 1963,5, 33–48. (a)
[72] Shepard, R. N. Comments on Professor Underwood’s paper ”Stimulus selection in verbal learning.” In C. N. Cofer and B. S. Musgrave (Eds.),Verbal behavior and learning: Problems and processes. New York: McGraw-Hill, 1963. Pp. 48–70. (b)
[73] Shepard, R. N. Attention and the metric structure of the stimulus space.Journal of Mathematical Psychology, 1964,1, 54–87. (a) · doi:10.1016/0022-2496(64)90017-3
[74] Shepard, R. N. Polynomial fitting in the analysis of proximities.Proceedings of the XVIIth international congress of psychology. Amsterdam: North-Holland Publisher, 1964, 345–346. (abstract) (b)
[75] Shepard, R. N. Approximation to uniform gradients of generalization by monotone transformations of scale. In D. I. Mostofsky (Ed.),Stimulus Generalization. Stanford, Calif.: Stanford University Press, 1965. Pp. 94–110.
[76] Shepard, R. N. Computer explorations of psychological space. Invited research address presented at the annual meeting of the American Psychological Association, New York, September 3, 1966. (a)
[77] Shepard, R. N. Metric structures in ordinal data.Journal of Mathematical Psychology, 1966,3, 287–315. (b) · doi:10.1016/0022-2496(66)90017-4
[78] Shepard, R. N. Continuity versus the triangle inequality as a central principle for the spatial analysis of similarity data. Presented in a symposium on alternative models for the geometric representation of psychological data, at the mathematical psychology meetings, Stanford University, August 28, 1968.
[79] Shepard, R. N. Introduction to Volume I. In R. N. Shepard, A. K. Romney, & S. B. Nerlove (Eds.),Multidimensional scaling: Theory and applications in the behavioral sciences, Vol. I. New York: Seminar Press, 1972. Pp. 1–20. (a)
[80] Shepard, R. N. A taxonomy of some principal types of data and of multidimensional methods for their analysis. In R. N. Shepard, A. K. Romney, & S. B. Nerlove (Eds.),Multidimensional scaling: Theory and applications in the behavioral sciences, Vol. I. New York: Seminar Press, 1972. Pp. 21–47. (b)
[81] Shepard, R. N. Psychological representation of speech sounds. In E. E. David & P. B. Denes (Eds.),Human communication: A unified view. New York: McGraw-Hill, 1972. Pp. 67–113. (c)
[82] Shepard, R. N., and Carroll, J. D. Parametric representation of nonlinear data structures. In P. R. Krishnaiah (Ed.),Multivariate analysis: Proceedings of an international symposium. New York: Academic Press, 1966. Pp. 561–592.
[83] Shepard, R. N., and Cermak, G. W. Perceptual-cognitive explorations of a toroidal set of free-form stimuli.Cognitive Psychology, 1973,4, 351–377. · doi:10.1016/0010-0285(73)90018-2
[84] Shepard, R. N., Hovland, C. I. and Jenkins, H. M. Learning and memorization of classifications.Psychological Monographs, 1961,75, (13, whole no. 517).
[85] Shepard, R. N., Kilpatric, D. W., and Cunningham, J. P. The internal representation of numbers.Cognitive Psychology, in press.
[86] Silberstein, L. Investigations of the intrinsic properties of the color domain.Journal of the Optical Society of America, 1938,28, 63–85. · JFM 64.1373.02 · doi:10.1364/JOSA.28.000063
[87] Silberstein, L., and MacAdam, D. L. The distribution of color matchings around a color center.Journal of the Optical Society of America, 1945,35, 32–39. · doi:10.1364/JOSA.35.000032
[88] Sokal, R. R., and Sneath, P. H. A.Principles of numerical taxonomy. San Francisco: W. H. Freeman, 1963. · Zbl 0285.92001
[89] Stenson, H. H., and Knoll, R. L. Goodness of fit for random rankings in Kruskal’s nonmetric scaling procedure.Psychological Bulletin, 1969,71, 122–126. · doi:10.1037/h0026864
[90] Thomas, H. Spatial models and multidimensional scaling of random shapes.American Journal of Psychology, 1968,81, 551–558. · doi:10.2307/1421059
[91] Torgerson, W. S. Multidimensional scaling: I. theory and method.Psychometrika, 1952,17, 401–419. · Zbl 0049.37603 · doi:10.1007/BF02288916
[92] Torgerson, W. S.Theory and methods of scaling. New York: Wiley, 1958.
[93] Torgerson, W. S. Multidimensional scaling of similarity.Psychometrika, 1965,30, 379–393. · doi:10.1007/BF02289530
[94] Tucker, L. R. Relations between multidimensional scaling and three-mode factor analysis.Psychometrika, 1972,37, 3–27. · Zbl 0232.92009 · doi:10.1007/BF02291410
[95] Wish, M., and Carroll, J. D. Applications of ”INDSCAL” to studies of human perception and judgment. In E. C. Carterette and M. P. Friedman (Eds.),Handbook of perception, Vol. 2. New York: Academic Press, in press.
[96] Young, F. W. Nonmetric multidimensional scaling: Recovery of metric information.Psychometrika, 1970,35, 455–473. · doi:10.1007/BF02291820
[97] Young, F. W., and Torgerson, W. S. TORSCA, A FORTRAN IV program for Shepard-Kruskal multidimensional scaling analysis.Behavioral Science, 1967,12, 498. · doi:10.1002/bs.3830120611
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.