Montgomery, H. L.; Vaughan, R. C. The large sieve. (English) Zbl 0296.10023 Mathematika, Lond. 20, 119-134 (1973). Page: −5 −4 −3 −2 −1 ±0 +1 +2 +3 +4 +5 Show Scanned Page Cited in 7 ReviewsCited in 178 Documents MSC: 11N35 Sieves 11N13 Primes in congruence classes × Cite Format Result Cite Review PDF Full Text: DOI Online Encyclopedia of Integer Sequences: Conjecturally, this is the minimal y such that n primes occur infinitely often among (x+1, ..., x+y), that is, pi(x+y) - pi(x) >= n for infinitely many x. References: [1] Schinzel, Acta Arith 7 pp 1– (1961) [2] Schinzel, Acta Arith 4 pp 185– (1958) [3] Montgomery, J. London Math. Soc [4] DOI: 10.1007/BF01456325 · JFM 41.0381.01 · doi:10.1007/BF01456325 [5] Hardy, An introduction to the theory of numbers (1964) [6] Hardy, Inequalities (1934) [7] Gallagher, Mathematika 14 pp 14– (1967) [8] Elliott, Acta Arith 18 pp 405– (1971) [9] Davenport, Multiplicative number theory (1967) · Zbl 0159.06303 [10] Bombieri, Ann. Scuola Norm. Sup. Pisa 23 pp 223– (1969) [11] Bombieri, Acta Arith 18 pp 401– (1971) [12] DOI: 10.1007/BFb0060851 · doi:10.1007/BFb0060851 [13] DOI: 10.1112/jlms/s1-43.1.93 · Zbl 0254.10043 · doi:10.1112/jlms/s1-43.1.93 [14] DOI: 10.1016/0022-314X(69)90001-8 · Zbl 0182.37602 · doi:10.1016/0022-314X(69)90001-8 [15] DOI: 10.1016/0022-314X(73)90054-1 · Zbl 0253.10038 · doi:10.1016/0022-314X(73)90054-1 [16] DOI: 10.1112/jlms/s2-5.3.567 · Zbl 0243.10038 · doi:10.1112/jlms/s2-5.3.567 [17] DOI: 10.1112/jlms/s2-4.4.638 · Zbl 0234.10032 · doi:10.1112/jlms/s2-4.4.638 [18] Lint, Acta Arith 11 pp 209– (1965) [19] Klimov, Uspehi Mat. Nauk 16 pp 181– (1961) [20] Hensley, Proc Symposia Pure Math 24 pp 123– (1973) · doi:10.1090/pspum/024/9945 [21] DOI: 10.1112/jlms/s1-2.4.210 · JFM 53.0164.01 · doi:10.1112/jlms/s1-2.4.210 [22] Uchiyama, J. Fac. Sci. Hokkaido Univ 16 pp 189– (1962) [23] Selberg, Proc. Intern. Congr.Math pp 286– (1950) [24] Rosser, Illinois J. Math 6 pp 64– (1962) This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.