×

zbMATH — the first resource for mathematics

An algebraic correspondence with applications to projective bundles and blowing up Chern classes. (English) Zbl 0296.14009

MSC:
14E05 Rational and birational maps
14C15 (Equivariant) Chow groups and rings; motives
14F05 Sheaves, derived categories of sheaves, etc. (MSC2010)
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Borel, A.; Hirzebruch, F., Characteristic classes and homogeneous spaces, I, II, III, Am. Journal of Math., 80, 458-538 (1958) · Zbl 0097.36401
[2] Borel, A.; Serre, J.-P., Le théoreme de Riemann-Roch, Bull. Soc. Math. de France, 86, 97-136 (1958) · Zbl 0091.33004
[3] N. Bourbaki,Eléments de Mathematique, vol. XXXIII and XXXVI. · Zbl 0165.56403
[4] SeminaireC. Chevalley,Anneaux de Chow et applications, Secretariat mathématique, 11 Rue Pierre Curie, Paris 5e, 1958.
[5] Galbura, Gh., Sui covarianti di immersione, Rend. di Mat., 25, 239-247 (1966) · Zbl 0159.50701
[6] Galbura, Gh.; Lascu, A. T., Eclatement des classes de Chern d’une variété algébrique, Rev. Rom. Math. Pures et Appl., 12, 1255-1258 (1967) · Zbl 0168.18803
[7] Grothendieck, A., La théorie des classes de Chern, Bull. Soc. Math. de France, 86, 137-159 (1958) · Zbl 0091.33201
[8] F. Hirzebruch,Topological methods in algebraic geometry, Grundlehren der Math. Wissenschaften,131 (1966). · Zbl 0138.42001
[9] S. A. Ilori - A. W. Ingleton - A. T. Lascu,On a formula of D. B. Scott (in preparation) (to appear in J. London Math. Soc.). · Zbl 0292.14004
[10] Ingleton, A. W.; Scott, D. B., The tangent direction bundle of an algebraic variety and generalized Jacobians of linear systems, Annali di Mat., 56, 4, 359-374 (1961) · Zbl 0124.37002
[11] Jouanolou, J.-P., Riemann-Roch sans dénominateurs, Inventiones Math., 11, 15-26 (1970) · Zbl 0199.55901
[12] Porteous, I. R., Blowing up Chern classes, Proc. Cambridge Phil. Soc., 56, 118-124 (1960) · Zbl 0166.16701
[13] I. R. Porteous,Simple Singularities of Maps, inProc. Liverpool Singularities Symposium I, Springer Lecture Notes in Mathematics, vol. 192. · Zbl 0221.57016
[14] Scott, D. B., Natural lifts and the covariant systems of Todd, J. London Math. Soc., 1, 2, 709-718 (1969) · Zbl 0183.25601
[15] Scott, D. B., A topological approach to branch and double curves of correspondences between algebraic surfaces (1971), Milano: Convegno Internazionale Enriques, Milano
[16] Segre, B., Nuovi metodi e risultati nella geometria sulle varietà algebriche, Annali di Mat., 35, 4, 1-127 (1953) · Zbl 0068.14502
[17] Segre, B., Dilatazioni e varietà canoniche sulle varietà algebriche, Annali di Mat., 37, 4, 139-155 (1954) · Zbl 0056.39802
[18] Todd, J. A., Birational transformations with isolated fundamental points, Proc. Edinburgh Math. Soc., 5, 2, 117-124 (1938) · Zbl 0018.23303
[19] Todd, J. A., Birational transformations possessing fundamental curves, Proc. Cambridge Phil. Soc., 34, 144-155 (1938) · JFM 64.0669.03
[20] Todd, J. A., Invariant and covariant systems on an algebraic variety, Proc. London Math. Soc., 46, 2, 199-230 (1940) · JFM 66.0793.02
[21] Todd, J. A., Birational transformations with a fundamental surface, Proc. London Math. Soc., 47, 2, 81-100 (1941) · JFM 67.0619.01
[22] J. A. Todd,Canonical systems on algebraic varieties, Boletin de la Sociedad Matematica Mexicana (1957), pp. 38-44. · Zbl 0082.14602
[23] Van De Ven, A. J. H. M., Characteristic classes and monoidal transformations, Indag. Math., 18, 571-578 (1956) · Zbl 0074.38602
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.