zbMATH — the first resource for mathematics

Not every Banach space contains an imbedding of \(l_p\) or \(c_0\). (English. Russian original) Zbl 0296.46018
Funct. Anal. Appl. 8, 138-141 (1974); translation from Funkts. Anal. Prilozh. 8, No. 2, 57-60 (1974).

46B15 Summability and bases; functional analytic aspects of frames in Banach and Hilbert spaces
46B03 Isomorphic theory (including renorming) of Banach spaces
Full Text: DOI
[1] J. Lindenstrauss, ”The geometric theory of the classical Banach spaces,” Actes du Congr?s Intern. Math., 1970, Paris, Vol. 2 (1971), pp. 365-372.
[2] N. Dunford and J. T. Schwartz, Linear Operators, Part I, Interscience, New York (1958).
[3] R. C. James, ”Bases and reflexivity of Banach spaces,” Ann. Math.,52, No. 3 (1950). · Zbl 0039.12202
[4] M. G. Krein, D. P. Mil’man, and M. A. Rutman, ”On a property of a basis in a Banach space,” Zapiski Khar’k. Matem. Ob-va,16, 106-110 (1940). · Zbl 0023.13105
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.