×

On subsequences of the Haar system in \(L_p [0,1]\), \((1<p<\infty)\). (English) Zbl 0296.46031


MSC:

46E30 Spaces of measurable functions (\(L^p\)-spaces, Orlicz spaces, Köthe function spaces, Lorentz spaces, rearrangement invariant spaces, ideal spaces, etc.)
42C05 Orthogonal functions and polynomials, general theory of nontrigonometric harmonic analysis
46B15 Summability and bases; functional analytic aspects of frames in Banach and Hilbert spaces
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] T. Ando,Banachverbände und positive Projektionen, Math. Z.109 (1696), 121–130. · Zbl 0174.16801 · doi:10.1007/BF01111244
[2] C. Bessaga and A. Pełcyznski,On bases and unconditional convergence of series in Banach spaces, Studia Math.17 (1958), 151–164. · Zbl 0084.09805
[3] N. Dunford and J. T. Schwartz,Linear Operators I, New York, 1958. · Zbl 0084.10402
[4] W. B. Johnson, H. P. Rosenthal and M. Zippin,On bases, finite dimensional decompositions and weaker structures in Banach spaces, Israel J. Math.9 (1971), 488–506. · Zbl 0217.16103 · doi:10.1007/BF02771464
[5] J. Lindenstrauss and A. Pełczyński,Absolutely summing operators in p-spaces and their applications, Studia Math.29 (1968), 275–326. · Zbl 0183.40501
[6] J. Lindenstrauss and A. Pełczyński,Contributions to the theory of the classical Banach spaces, J. Functional Analysis8 (1971), 225–249. · Zbl 0224.46041 · doi:10.1016/0022-1236(71)90011-5
[7] J. Lindenstrauss and H. P. Rosenthal,The p-spaces, Israel J. Math.7 (1969), 325–349. · Zbl 0205.12602 · doi:10.1007/BF02788865
[8] A. Pełczyński,Projections in certain Banach spaces, Studia Math.19 (1960), 209–228. · Zbl 0104.08503
[9] H. P. Rosenthal,On the subspaces of L p (p>2) spanned by sequences of independent random variables, Israel J. Math.,8 (1970), 237–303. · Zbl 0213.19303 · doi:10.1007/BF02771562
[10] I. Singer,Bases in Banach spaces I, Springer-Verlag, New York, 1970. · Zbl 0198.16601
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.