zbMATH — the first resource for mathematics

Approximationszahlen, \(p\)-nukleare Operatoren und Hilbertraumcharakterisierungen. (German) Zbl 0296.47017

47B10 Linear operators belonging to operator ideals (nuclear, \(p\)-summing, in the Schatten-von Neumann classes, etc.)
46B10 Duality and reflexivity in normed linear and Banach spaces
46B03 Isomorphic theory (including renorming) of Banach spaces
47L05 Linear spaces of operators
Full Text: DOI EuDML
[1] Dvoretzky, A.: Some results on convex bodies in Banach spaces, Proc. Symp. on Linear Spaces 123-160, Jerusalem 1961 · Zbl 0119.31803
[2] Grothendieck, A.: Produits tensoriels topologiques et espaces nucléaires. Mem. Amer. Math. Soc.16 (1955) · Zbl 0123.30301
[3] Lindenstrauss, J., Pelczy?ski, A.: Absolutely summing operators in ?? p -spaces and applications. Studia Math.29, 275-326 (1968) · Zbl 0183.40501
[4] Lindenstrauss, J., Tzafriri, L.: On the complemented subspace problem. Israel J. Math.9, 263-269 (1971) · Zbl 0211.16301 · doi:10.1007/BF02771592
[5] Morrell, J.S., Retherford, J.R.:p-trivial Banach spaces. Studia Math.43, 1-25 (1972) · Zbl 0211.14801
[6] Persson, A.: On some properties ofp-nuclear andp-integral operators. Studia Math.33, 213-222 (1969) · Zbl 0184.17903
[7] Persson, A., Pietsch, A.:p-nukleare andp-integrale Abbildungen in Banachräumen. Studia Math.33, 19-62 (1969) · Zbl 0189.43602
[8] Pietsch, A.: Einige neue Klassen von kompakten linearen Abbildungen. Revue Roumaine Math. Pures Appl.8, 427-447 (1963) · Zbl 0133.07203
[9] Pietsch, A.:s-numbers of operators in Banach spaces. Erscheint in Studia Math. · Zbl 0294.47018
[10] Pietsch, A.: Nukleare lokalkonvexe Räume. Berlin: Akademie Verlag 1969 · Zbl 0184.14602
[11] Stegall, C.P., Retherford, J.R.: Fully nuclear and completely nuclear operators with applications to ?1- and ??-spaces. Trans. Amer. Math. Soc.163, 457-492 (1972) · Zbl 0205.43003
[12] Tong. A.E.: Diagonal nuclear operators onl p spaces. Trans. Amer. Math. Soc.143, 235-247 (1969) · Zbl 0186.45602
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.