×

zbMATH — the first resource for mathematics

Free boundary problems in the theory of fluid flow through porous media: A numerical approach. (English) Zbl 0296.76052

MSC:
76S05 Flows in porous media; filtration; seepage
76B99 Incompressible inviscid fluids
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Aravin, V. I.–Numerov, S. A.,Theory of fluid flow in undeformable porous media. Ierusalem. Israel Program for scientific translation 1965.
[2] Aubin, J. P.,Approximation of elliptic boundary value problems. Wiley-Interscience, J. Wiley Sons, 1972. · Zbl 0248.65063
[3] Baiocchi, C.,Su un problema di frontiera libera connesso a questioni di idraulica. Ann. di Mat. pura e appl. (IV) vol. XCII, (1972), 107–127, preliminary note on C. R. Acad. Sc. Paris, t. 273 (1917), 1215–1217. · Zbl 0258.76069
[4] Baiocchi, C.–Comincioli, V.–Magenes, E.–Pozzi, G. A.,Free boundary problems in the theory of fluid flow through porous media: existence and uniqueness theorems (to appear). · Zbl 0343.76036
[5] Cea, J.,Approximation variationnelle des problèmes aux limites. Ann. Ist. Fourier, 14 (1964), 345–444. · Zbl 0127.08003
[6] Cea, J.,Optimisation.-Théorie et algorithmes. Paris: Dunod, (1971).
[7] Citrini, D.,Studio elementare delle falde freatiche afovianti a mare. Istituto, Lombardo (Rend. Sc.) A 94, (1960), 709–728.
[8] Comincioli, V.–Gurrri, L.–Volpi, G.,Analisi numerica di un problema di frontiera libera connesso col moto di un fluido attraverso un mezzo poroso. Publication 17 of Laboratorio di Analisi Numerica C. N. R. Pavia (1971). · Zbl 0263.65075
[9] Comincioli, V.,Metodi di rilassamento per la minimizzazione in uno spazio prodotto, Pubblication N. 20 of Laboratorio di Analisi Numerica del C. N. R. Pavia (1971). · Zbl 0263.65076
[10] Cryer, C. W.,On the approximate solution of free boundary problems using finite differences. J. Assoc. Comput. Mach., 17 N. 3, (1970), 397–411. · Zbl 0217.21903
[11] Cryer, C. W.,The solution of a quadratic programming problem using systematic overrelaxation. Siam J. Control 9, N. 3, (1971), 385–392. · Zbl 0216.54603
[12] Duvaut, G.–Lions, J. L.–Les inéquations en Mécanique et en Physique, Dunod Paris, (1972). · Zbl 0298.73001
[13] Fusciardi, A.–Mosco, U.–Scarpini, F.–Schiaffino, A.,A dual method for the numerical solution of some variational inequalities. (to appear). · Zbl 0277.49011
[14] Glowinski, R.–Lions, J. L.–Tremolieres, R.,Résolution numérique des inéquations de la Mecanique et de la Physique. Forthcoming, book Dunod Paris.
[15] Glowinski, R.,Lectures notes in ”Constructive aspects of functional analysis”. Corso C. I. M. E. (1971). Forthcoming book Cremonese Roma 1972.
[16] Glover, R. E.,The pattern of fresh-water flow in a coastal aquifers. Journal of Geophysical research april 1969.
[17] Hamel, G.,Über Grundwasserströmung. Zeit. ang. Math. Mech., 14 (1934). · JFM 60.0724.02
[18] Hamel, G.–Gunther, E.,Numerische Durchrechnung zu der Abharedlung über Grundwasserströmung Zeit. ang. Math. Mech., 15 (1935), 255–265. · JFM 61.0910.07
[19] Harr, M. E.,Groundwater and seepage. New York: Mc. Graw-Hill 1962.
[20] Henry, H. R.,Salt intrusion into fresh-water aquifers. Journal of Geophysical research november 1959.
[21] Jeppson, R. W.,Free-surface, flow through heterogeneous porous media. Journal of the Hydraulics Division Proceedings of the American Society of Civil Engineers vol. 95, January (1969), 364–381.
[22] Jeppson, R. W.,Seepage from Channels through layered porous mediums. Water Resources Research vol. 4, N. 2 (1968), 435–445.
[23] Lions, J. L.–Stampacchia, G.,Variational inequalities. Comm. Pure Appl. Math. vol. 20, (1967), 493–519. · Zbl 0152.34601
[24] Lions, J. L.,Lectures notes in ”Constructive aspects of functional analysis”. Corso C. I. M. E. 1971. Forthcoming book by Cremonese, Roma 1972.
[25] Lions, J. L.,Quelques méthodes de resolution de problèmes aux limites non linéaires. Dunod Gauthier Villars, Paris, 1969.
[26] Lions, J. L.–Magenks, E.,Non-homogeneous boundary value problems and applications. Vol. I. Grundlhereu B. 181. Springer 1972.
[27] Magenes, E.,Su alcuni problemi ellittici di frontiera libera connessi con it comportamento dei fluidi nei mezzi porosi. To appear on Symposia Math. I. N. A. M., Roma, 1972. · Zbl 0261.76063
[28] Maione, U.–Franzetti, S.,Unconfined flow downstream of an homogeneous sarth dam with impervious sheetpiles. Thirteenth Congress of the International Association for Hydraulie research Kyoto, (1969), 191–204.
[29] Maione, U.,Sul moto di filtrazione a superficie libera a valle di diaframmi impermeabili, Pubblication N. 2. Istituto di Idraulica, Pavia 1971.
[30] Marzulli, P.,Generalizzazione di un metodo alle differenze finite per una classe di problemi al contorno di tipo ellittico. Calcolo 6, III–IV, (1969), 425–436. · Zbl 0227.65052
[31] Mauersberger, P.,A variational prinoiple for steady state groundwater flow with a free surface. Pageoph. vol. 60, (1965), 101–106.
[32] Mosco, U.,Lecture notes in ”Constructive aspects of functional analysis”, Corso C.I.M.E. 1971. Forthcoming book by Cremonese, Roma 1972.
[33] Muskat, M.,The flow of homogeneous fluids through porous media. New York: McGraw-Hill 1937. · JFM 63.1368.03
[34] Miellou, J. C.,Méthodes de Jacobi, Gauss-Seidel, sur (sous) relaxation par blocs, appliquées à une classe de problème non linéaires. C. R. Acad. Sc. Paris, t. 273, (20 décember 1971), 1257–1259.
[35] Neumann, S. T.–Witherspoon, P. A.,Finite element method of analyzing steady see-page with a free surface. Water Resources Research 6 N. 3, (1970), 889–897.
[36] Neumann, S. T.–Witherspoon, P. A.,Variational principles for confined and unconfined flow of groundwater. Water Resources Research 6 N. 5, (1970), 1376–1387.
[37] Polubarinova-Kochina, P. Ya,The theory of groundwater movement. Princeton University Press, Princeton, New Jersey, 1962. · Zbl 0114.42601
[38] Russo-Spena, A. Moti di filtrazione a superficie libera attraverso sistemi di stati filtranti di permeabilità diverss. L’Energia Elettrica, Milano, N. 1, (1960), 1–17.
[39] Sibony, M.,Méthodes itératives pour les équations et inéquations aux derivées partielles non linéaires de type monotone. Calcolo vol. II, (1970), 65–183. · Zbl 0225.35010
[40] Sibony, M.,Sur Vapproximation d’équations aux dérivées partielles non linéaires de type monotone. J. Math. Anal. Appl. 34, (1971), 502–564. · Zbl 0216.42201
[41] Southwell, R. V.,Relaxation methods in theoretical physics, Oxford: Clarendon Press 1946. · Zbl 0061.27706
[42] Stampacchia, G.,Formes bilinéaires coeroitives sur les ensembles convexes. C. R. Acad. Sc. t. 258, (1964), 4413–4416. · Zbl 0124.06401
[43] Stampacchia, G.,On a problem of numerical analysis connected with the theory of variational inequalities. To appear on Symposia Math. I. N. A. M. Roma 1972. · Zbl 0265.49004
[44] Strang, G.–Fix, G.,An analysis of the finite element method To be published by Preutice-Hall.
[45] Varga, R. S.,Matrix iterative analysis. New York, Prentice-Hall 1962. · Zbl 0133.08602
[46] Zienkiewicz, O. C.,The finite element method in engineering science. London: McGraw-Hill 1971. · Zbl 0237.73071
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.