×

zbMATH — the first resource for mathematics

Spectral asymmetry and Riemannian geometry. I. (English) Zbl 0297.58008

MSC:
58J20 Index theory and related fixed-point theorems on manifolds
53C20 Global Riemannian geometry, including pinching
58J99 Partial differential equations on manifolds; differential operators
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] DOI: 10.2307/1970757 · doi:10.2307/1970757
[2] DOI: 10.1112/blms/5.2.229 · Zbl 0268.58010 · doi:10.1112/blms/5.2.229
[3] DOI: 10.1007/BF01425417 · Zbl 0257.58008 · doi:10.1007/BF01425417
[4] Atiyah, Differential Analysis (1964)
[5] Stong, Notes on Cobordism Theory (1968)
[6] Seeley, Proc. Sympos. Pure Math. 10 pp 288– (1971) · doi:10.1090/pspum/010/0237943
[7] DOI: 10.2307/1970909 · Zbl 0267.32014 · doi:10.2307/1970909
[8] DOI: 10.1016/0001-8708(71)90045-4 · Zbl 0239.58014 · doi:10.1016/0001-8708(71)90045-4
[9] Patodi, J. Diff. Geometry 5 pp 233– (1971)
[10] Palais, Ann. of Math. Study 57 (1965)
[11] DOI: 10.2307/1970473 · Zbl 0132.07402 · doi:10.2307/1970473
[12] De Rham, Vari?t?s Diff?rentiables (1960)
[13] Hirzebruch, Enseignement Math. 19 pp 183– (1973)
[14] Connor, Mem. Amer. Math. Soc. 20 (1956)
[15] DOI: 10.1073/pnas.68.4.791 · Zbl 0209.25401 · doi:10.1073/pnas.68.4.791
[16] Carslaw, Conduction of Heat in Solids (1959)
[17] DOI: 10.1016/0040-9383(64)90003-5 · Zbl 0146.19001 · doi:10.1016/0040-9383(64)90003-5
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.