×

A rank decision rule for a combined problem of testing and classification. (English) Zbl 0297.62028

MSC:

62G10 Nonparametric hypothesis testing
62H30 Classification and discrimination; cluster analysis (statistical aspects)
PDF BibTeX XML Cite
Full Text: EuDML

References:

[1] Doob J. L.: Heuristic approach to the Kolmogorov - Smirnov theorem. Annals of Math. Stat. 20 (1949), 393-403. · Zbl 0035.08901
[2] Hájek J., Šidák Z.: Theory of Rank Tests. Academia, Publishing House of the Czechoslovak Academy of Sciences. Praha 1967. · Zbl 0161.38102
[3] Hall I. J., Kudo A.: On slippage tests I. A generalization of Neyman-Pearson’s Lemma. Annals of Math. Stat. 39 (1968), 1693-1699. · Zbl 0182.51401
[4] Hall I. J., Kudo A., Yeh N.C.: On slippage tests II. Similar slippage tests. Annals of Math. Stat. 39 (1968), 2029-2037. · Zbl 0176.48601
[5] Karlin S., Truax D. R.: Slippage problems. Annals of Math. Stat. 31 (1960), 296-324. · Zbl 0131.35602
[6] Mosteller F.: A k-sample slippage test for an extreme population. Annals of Math. Stat. 19 (1948), 53-65. · Zbl 0031.37102
[7] Nguyen van Huu: Rank test of hypothesis of randomness against a group of regression alternatives. Aplikace Matematiky 17 (1972), 422-447. · Zbl 0258.62025
[8] Paulson E.: An optimal solution to k-sample slippage problem for the normal distribution. Annals of Math. Stat. 23 (1952), 610-616, · Zbl 0047.38204
[9] Pfanzagl J.: Ein kombiniertes Test & Klassifikations-Problem. Metrika 2 (1959), 11-45. · Zbl 0085.13302
[10] Slepian D.: The one-sided barrier problem for Gaussian noise. Bell System Techn. J. 41 (1962), 463-501.
[11] Truax D. R.: An optimum slippage test for the variance of k normal distributions. Annals of Math. Stat. 24 (1953) 669-674. · Zbl 0051.36104
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.