zbMATH — the first resource for mathematics

Oscillation matrices with spline smoothing. (English) Zbl 0297.65002

65D05 Numerical interpolation
41A15 Spline approximation
Full Text: DOI EuDML
[1] Atteia, M.: Généralisation de la définition et des propriétés des ?spline-fonctions?. C. R. Acad. Sc. Paris260, 3550-3553 (1965). Fonctions-spline généralisées. C. R. Acad. Sc. Paris261, 2149-2152 (1965) · Zbl 0163.37703
[2] Anselone, P.M., Laurent, P. J.: A general method for the construction of interpolating or smoothing spline-functions. Numer. Math.12, 66-82 (1968) · Zbl 0197.13501
[3] Barankin, E., Dorfman, R.. On quadratic programming. University of California Publications in Statistics2, 258-318 (1958)
[4] Böhmer, K.: Spline-Funktionen. Stuttgart: Teubner-Verlag 1974 · Zbl 0278.41013
[5] Crawford, C. R.: Reduction of a band-symmetric generalized eigenvalue problem. Comm. ACM.16, 41-44 (1973) · Zbl 0247.65025
[6] Gantmacher, F. R., Krein, M. G.: Oszillationsmatrizen, Oszillationskerne und kleine Schwingungen mechanischer Systeme. Berlin: Akademie-Verlag 1960 · Zbl 0088.25103
[7] Karlin, S.: Total Positivity I. Stanford: Stanford University Press 1968 · Zbl 0219.47030
[8] Laurent, P. J.. Construction of spline functions in a convex set. 415-446, Approximations with Special Emphasis on Spline Functions. Edit. I. J. Schoenberg. New York, London: Academic Press 1969
[9] Reinsch, C.: Smoothing by spline functions. Numer. Math.10, 177-183 (1967) · Zbl 0161.36203
[10] Reinsch, C.: Smoothing by spline functions II. Numer. Math.16, 451-454 (1971) · Zbl 1248.65020
[11] Ritter, K.: Generalized spline interpolation and non-linear programming. 75-117, Approximations with Special Emphasis on Spline Functions. Edit. I. J. Schoenberg. New York, London: Academic Press 1969
[12] Schoenberg, I. J.: Über variationsvermindernde lineare Transformationen. Math. Z.32, 321-328 (1930) · JFM 56.0106.06
[13] Schoenberg, I. J.: Spline functions and the problem of graduation. Proc. Nat. Acad. Sci. (U.S.A.)52, 947-950 (1964) · Zbl 0147.32102
[14] Schoenberg, I. J., Curry, H. B.: On Pólya frequency functions IV: The fundamental spline functions and their limits. J. Analyse Math.17, 71-107 (1966) · Zbl 0146.08404
[15] Wahba, G.: Smoothing noisy data by spline functions. Technical Reports 340 and 380. University of Wisconsin, Madison, Department of Statistics, (1974) · Zbl 0299.65008
[16] Yosida, K.: Functional Analysis, Berlin, Heidelberg: Springer-Verlag 1968 · Zbl 0152.32102
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.