×

Error estimates for the approximation of a class of variational inequalities. (English) Zbl 0297.65061


MSC:

65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
35J20 Variational methods for second-order elliptic equations
41A15 Spline approximation
41A25 Rate of convergence, degree of approximation
Full Text: DOI

References:

[1] Jean Pierre Aubin, Approximation of variational inequations, Functional Analysis and Optimization, Academic Press, New York, 1966, pp. 7 – 14.
[2] H. Brézis and M. Sibony, Équivalence de deux inéquations variationnelles et applications, Arch. Rational Mech. Anal. 41 (1971), 254 – 265 (French). · Zbl 0214.11104 · doi:10.1007/BF00250529
[3] Haïm R. Brezis and Guido Stampacchia, Sur la régularité de la solution d’inéquations elliptiques, Bull. Soc. Math. France 96 (1968), 153 – 180 (French). · Zbl 0165.45601
[4] R. S. FALK, Approximate Solutions of Some Variational Inequalities with Order of Convergence Estimates, Ph. D. Thesis, Cornell University, Ithaca, N. Y., 1971.
[5] Hans Lewy and Guido Stampacchia, On the regularity of the solution of a variational inequality, Comm. Pure Appl. Math. 22 (1969), 153 – 188. · Zbl 0167.11501 · doi:10.1002/cpa.3160220203
[6] J.-L. Lions and G. Stampacchia, Variational inequalities, Comm. Pure Appl. Math. 20 (1967), 493 – 519. · Zbl 0152.34601 · doi:10.1002/cpa.3160200302
[7] Umberto Mosco, Approximation of the solutions of some variational inequalities, Ann. Scuola Norm. Sup. Pisa (3) 21 (1967), 373 – 394; erratum, ibid. (3) 21 (1967), 765. · Zbl 0184.36803
[8] Umberto Mosco, Convergence of convex sets and of solutions of variational inequalities, Advances in Math. 3 (1969), 510 – 585. · Zbl 0192.49101 · doi:10.1016/0001-8708(69)90009-7
[9] J. Nitsche, Lineare Spline-Funktionen und die Methoden von Ritz für elliptische Randwertprobleme, Arch. Rational Mech. Anal. 36 (1970), 348 – 355 (German). · Zbl 0192.44503 · doi:10.1007/BF00282271
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.