zbMATH — the first resource for mathematics

Every finite distributive lattice is the congruence lattice of some modular lattice. (English) Zbl 0298.06013

06C05 Modular lattices, Desarguesian lattices
06D05 Structure and representation theory of distributive lattices
Full Text: DOI
[1] G. Bergman, Ph.D. thesis
[2] G. Grätzer,Lattice theory. First concepts and distributive lattices. (W. H. Freeman and Company San Francisco, 1971). · Zbl 0232.06001
[3] M. Hall and R. P. Dilworth,The imbedding problem for modular lattices, Annals of Math.,45 (1944), 450–456. · Zbl 0060.06102 · doi:10.2307/1969187
[4] A. Huhn,Schwach, distributive Verbände, Acta F.R.M. Univ. Comen. (1971), 51–56.
[5] E. T. Schmidt,Zur Charakterisierung die Kongruenzverbände der Verbände, Mat. Casopis18 (1968), 3–20. · Zbl 0155.35102
[6] E. T. Schmidt,Über die Kongruenzrelationen der modularen Verbände, Beiträge zur Algebra and Geometrie, Halle (to appear). · Zbl 0309.06004
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.