×

zbMATH — the first resource for mathematics

Bounded groups and norm-Hermitian matrices. (English) Zbl 0298.15017

MSC:
15A60 Norms of matrices, numerical range, applications of functional analysis to matrix theory
15B57 Hermitian, skew-Hermitian, and related matrices
15A21 Canonical forms, reductions, classification
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Auerbach, H., Sur LES groupes bornés de substitutions linéaires, C.R. acad. sci. Paris, 195, 1367-1369, (1932) · JFM 58.0128.05
[2] Bauer, F.L., On the field of values subordinate to a norm, Numer. math., 4, 103-113, (1962) · Zbl 0117.11004
[3] Beckenbach, E.F.; Bellman, R., Inequalities, (1965), Springer-Verlag New York · Zbl 0128.27401
[4] Behrend, F., Über einige affininvarianten konvexer bereiche, Math. ann., 113, 713-747, (1937) · JFM 62.0834.03
[5] Behrend, F., Über die kleinste umbeschriebene und die grösste einbeschriebene ellipse eines konvexen bereichs, Math. ann., 115, 379-411, (1938) · Zbl 0018.17502
[6] Bellman, R., Notes on matrix theory-II, Amer. math. monthly, 60, 173-175, (1953) · Zbl 0050.01002
[7] Bellman, R., Introduction to matrix analysis, (1970), McGraw-Hill New York · Zbl 0216.06101
[8] Berkson, E., Hermitian projections and orthogonality in Banach spaces, Proc. London. math. soc., 24, 3, 101-118, (1972) · Zbl 0225.46021
[9] Bonsall, F.F.; Duncan, J., Numerical ranges of operators on normed spaces and of elements of normed algebras, () · Zbl 0207.44802
[10] Bourbaki, N., Éléments de mathématique, (), Chapitre 7 Mesure de Haar · Zbl 0165.56403
[11] Busemann, H., The geometry of geodesics, (1955), Academic Press New York · Zbl 0112.37002
[12] Carlson, D.; Loewy, R., On ranges of Lyapunov transformations, Linear algebra and appl., Mathematics research center tech. rep. no. 1323, 8, 237-248, (1973) · Zbl 0284.15013
[13] Carlson, D.; Schneider, H., Inertia theorems for matrices: the semidefinite case, J. math. anal. appl., 6, 430-446, (1963) · Zbl 0192.13402
[14] E. Deutsch, P.M. Gibson, and H. Schneider, Fuglede-Putnam theorem and normal products of matrices, (to appear). · Zbl 0315.15013
[15] Fan, K., On a theorem of Weyl concerning eigenvalues of linear transformations II, Proc. nat. acad. sci. U.S.A., 36, 31-35, (1950)
[16] Fuglede, B., A commutativity theorem for normal operators, Proc. nat. acad. sci. U.S.A., 36, 35-40, (1950) · Zbl 0035.35804
[17] Gromov, M.L., On a geometric conjecture of Banach, Izv. akad. nauk SSSR ser. mat., A geometrical conjecture of Banach, Math. USSR-izv., 1, 1055-1064, (1967), /in Russian/ · Zbl 0176.10903
[18] Halmos, P., Finite-dimensional vector spaces, (1958), Van Nostrand Princeton · Zbl 0107.01404
[19] Hoffman, K.; Kunze, R., Linear algebra, (1971), Prentice-Hall Englewood Cliffs, New Jersey · Zbl 0212.36601
[20] Householder, A.S., The theory of matrices in numerical analysis, (1964), Blaisdell New York · Zbl 0161.12101
[21] John, F., An inequality for convex bodies, (), 8-11
[22] John, F., Extremum problems with inequalities as subsidiary conditions, (), 187-204
[23] Loewner, C., Theory of continuous groups, (1971), The MIT Press Cambridge, Massachusetts, (Notes by H. Flanders and M.H. Protter) · Zbl 0208.32504
[24] R. Loewy, On ranges of Lyapunov transformation II, Linear and Multilinear Algebra (to appear). Mathematics Research Center Technical Report No. 1379 (to appear).
[25] Marcus, M.; Minc, H., A survey of matrix theory and matrix inequalities, (1964), Allyn and Bacon Boston · Zbl 0126.02404
[26] Marcus, M.; Minc, H., Introduction to linear algebra, (1965), Macmillan New York · Zbl 0142.26801
[27] Mirsky, L., An inequality for positive definite matrices, Amer. math. monthly, 62, 428-430, (1955) · Zbl 0064.01404
[28] Mirsky, L., An introduction to linear algebra, (1955), Oxford University Press Oxford · Zbl 0066.26305
[29] Murnaghan, F.D., The theory of group representations, (1938), The Johns Hopkins Press Baltimore · Zbl 0022.11807
[30] Nirschl, N.; Schneider, H., The Bauer fields of values of a matrix, Numer. math., 6, 355-365, (1964) · Zbl 0126.32102
[31] Oppenheim, A., Inequalities connected with definite Hermitian forms II, Amer. math. monthly, 61, 463-466, (1954) · Zbl 0056.01603
[32] Ostrowski, A., Über normen von matrizen, Math. Z., 63, 2-18, (1955) · Zbl 0065.24701
[33] Ostrowski, A.; Schneider, H., Some theorems on the inertia of general matrices, J. math. anal. appl., 4, 72-84, (1962) · Zbl 0112.01401
[34] Pontryagin, L.S., Topological groups, (1966), Gordon and Breach New York · Zbl 0022.17104
[35] Putnam, C.R., On normal operators in Hilbert space, Amer. J. math., 73, 357-362, (1951) · Zbl 0042.34501
[36] Rolewicz, S., Metric linear spaces, (1972), PWN-Polish Scientific Publishers Warszawa · Zbl 0226.46001
[37] Schäffer, J.J., Norms and determinants of linear mappings, Math. Z., 118, 331-339, (1970) · Zbl 0195.41602
[38] Schmidt, B., Spektrum, numerischer wertebereich und ihre maximumprinzipien in banachalgebren, Manuscripta math., 2, 191-202, (1970) · Zbl 0186.19701
[39] Schneider, H.; Barker, G.P., Matrices and linear algebra, (1973), Holt, Rinehard and Winston New York · Zbl 0182.04901
[40] Schneider, H.; Turner, R.E.L., Matrices Hermitian for an absolute norm, Linear and multilinear algebra, 1, 9-31, (1973)
[41] Sinclair, A.M., The norm of a Hermitian element in a Banach algebra, Proc. amer. math. soc., 28, 446-450, (1971) · Zbl 0242.46035
[42] Stein, P.; Pfeffer, A., On the ranges of two functions of positive definite matrices II, ICC bull, 6, 81-86, (1967)
[43] Taussky, O., Some remarks on the matrix operator ad A, (), presented to R. Rado · Zbl 0171.39903
[44] Weil, A., L’intégration dans LES groupes topologiques et ses applications, (1951), Hermann Paris
[45] Weigmann, N.A., Normal products of matrices, Duke math. J., 15, 633-638, (1948) · Zbl 0031.24302
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.