Applications d’une théorie généralisée des spineurs. (French) Zbl 0298.15019


15A66 Clifford algebras, spinors
16S50 Endomorphism rings; matrix rings
17B20 Simple, semisimple, reductive (super)algebras
17C20 Simple, semisimple Jordan algebras
Full Text: DOI


[1] Pauli, W., Ann. Inst. H. Poincaré, 6, 109-109 (1936) · Zbl 0015.19403
[2] Cartan, E., Leçons sur la Théorie des spineurs (1938), Paris: Exposés de Géométrie, Paris
[3] H. Weyl,The classical groups, Princeton, 1946. · Zbl 1024.20502
[4] C. Chevalley,The construction and study of certain important algebras, The Math. Soc. of Japan, 1955. · Zbl 0065.01901
[5] Rashevski, P. K., Usp. Mat. Nauk, X, 2, 3-3 (1955)
[6] N. Jacobson,Lie algebras, New York-London, 1962. · Zbl 0121.27504
[7] N. Jacobson,Lectures on Jordan algebras, Lectures notes, Univ. of Chicago, Math. 446, 1964.
[8] Popovici, I.; Gheorghe, C., C. R. Acad. Sc. Paris, 262, 682-682 (1966) · Zbl 0141.03105
[9] Popovici, I.; Gheorghe, C., Revue Roumaine de Math. pures et appl., XI, 8, 989-989 (1966) · Zbl 0146.42902
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.