zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
An elementary proof of the Baker-Campbell-Hausdorff-Dynkin formula. (English) Zbl 0298.22010

22E30Analysis on real and complex Lie groups
33C80Connections of hypergeometric functions with groups and algebras
34G99ODE in abstract spaces
Full Text: DOI EuDML
[1] Baker, H.F.: Alternants and continuous groups. Proc. London Math. Soc., II. Ser.3, 24--47 (1905) · Zbl 36.0225.01 · doi:10.1112/plms/s2-3.1.24
[2] Cartier, P.: Demonstration algébrique de la formule de Hausdorff, Bull. Soc. math. France84, 241--249 (1956) · Zbl 0072.01605
[3] Dynkin, E.B.: On the representation of the series log(e xey) with non-commutingx andy by commutators. Mat. Sbornik, n. Ser.25, 155--162 (1949) · Zbl 0041.16102
[4] Hochschild, G.: The structure of Lie groups. San Francisco-London-Amsterdam: Holden-Day, 1965 · Zbl 0131.02702
[5] Pejas, W.: Ein Beweis der qualitativen Aussage der Campbell-Hausdorff-Formel für analytische Gruppen. Arch. der Math.19, 453--456 (1968) · Zbl 0169.34704 · doi:10.1007/BF01898764
[6] Varadarajan, V.S.: Lie groups, Lie algebras, and their representations. Englewood Cliffs: Prentice-Hall 1974 · Zbl 0371.22001