×

zbMATH — the first resource for mathematics

Algorithm model for penalty functions-type iterative pcedures. (English) Zbl 0298.65043

MSC:
65K05 Numerical mathematical programming methods
90C30 Nonlinear programming
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] \scE. J. Beltrami, “A Constructive Proof of the Kuhn-Tucker Multiplier Rule” presented at the SIAM 1968 National Meeting in Toronto, Canada.
[2] Butler, T.; Martin, A.V., On a method of Courant for minimizing functionals, J. math. phys., 41, 291-299, (1962) · Zbl 0116.08001
[3] Canon, M.D.; Cullum, C.D.; Polak, E., Theory of optimal control and mathematical programming, (1970), McGraw-Hill Inc. · Zbl 0264.49001
[4] Courant, R., Variational methods for the solution of problems of equilibrium and vibrations, Bull. amer. math. soc., 49, 1-23, (1943) · Zbl 0810.65100
[5] Cullum, J., Penalty functions and nonconvex continuous optimal control problems, (), 55-67 · Zbl 0192.51804
[6] Dunford, N.; Schwartz, J.T., Linear operators, (1957), Interscience New York
[7] Fiacco, A.V.; McCormick, G.P., The sequential unconstrained minimization techniques for nonlinear programming: A primal dual method, Management sci., 10, 360-364, (1964)
[8] \scA. V. Fiacco and G. P. McCormick, “Asymptotic Conditions for Constrained Minimization” presented at the SIAM 1968 National Meeting in Toronto, Canada. · Zbl 0193.18805
[9] Frank, M.; Wolfe, P., An algorithm for quadratic programming, Naval res. logist quart., 3, 95-110, (1956)
[10] Kortanek, K.O.; Evans, J.P., Asymptotic Lagrange regularity for pseudoconcave programming with weak constraint qualification, Operation res., 16, No. 4, (1968) · Zbl 0164.19801
[11] E.S., Levitin; Polyak, B.T., Constrained minimization methods, USSR comp. math. and math. phys., 6, 1-50, (1966), (Translation of Zh. Vychisl. Mat. i. Mat. Fiz.\bf6 (1966), 787-823.) · Zbl 0184.38902
[12] Meyer, G.G.L., Abstract models for the synthesis of optimization algorithms, () · Zbl 0209.16704
[13] Meyer, G.G.L.; Polak, E., Abstract models for the synthesis of optimization algorithms, SIAM J. control, 9, 547-559, (1970) · Zbl 0209.16704
[14] Meyer, G.G.L., An open loop method of feasible directions for the solution of optimal control problems, () · Zbl 0323.65022
[15] Meyer, G.G.L., A drivable method of feasible directions, SIAM J. control, 11, 113-118, (1973) · Zbl 0255.90052
[16] Meyer, R., The validity of a family of optimization methods, SIAM J. control, 8, 41-54, (1970) · Zbl 0194.20501
[17] Michael, E., Topologies on spaces of subsets, Amer. math. soc. trans., 71, 152-182, (1951) · Zbl 0043.37902
[18] Polak, E., On the convergence of optimization algorithms, Rev. française informat. recherche operationnelle, serie rouge, 16, 17-34, (1969) · Zbl 0174.47906
[19] Polyak, B.T., Gradient methods for the minimization of functionals, U.S.S.R. comput. math. and math. phys., 3, 864-878, (1963), (Translation of Zh. Vychisl. Mat. i. Mat. Fiz.\bf3 (1963), 643-653.) · Zbl 0196.47701
[20] Russell, D.L., Penalty functions and bounded phase coordinate control, SIAM J. control, 2, 409-422, (1965) · Zbl 0133.36802
[21] Topkis, D.M.; Veinott, A., On the convergence of some feasible directions algorithms for nonlinear programming, SIAM J. control, 5, 286-379, (1967)
[22] Warga, J., Relaxed variational problems, J. math. anal. appl., 4, 111-128, (1962) · Zbl 0102.31801
[23] Yosida, K., Functional analysis, (1968), Springer-Verlag New York · Zbl 0152.32102
[24] Zangwill, W.I., Convergence conditions for nonlinear programming algorithms, () · Zbl 0191.49101
[25] Zangwill, W.I., Nonlinear programming: A unified approach, (1969), Prentice Hall Englewood Cliffs, New Jersey · Zbl 0191.49101
[26] Zlobec, S., Asymptotic kuhn—tucker conditions for mathematical programming problems in a Banach space, SIAM J. control, 8, 505-512, (1970) · Zbl 0206.49003
[27] Zoutendijk, G., Methods of feasible directions, (1960), Elsevier Amsterdam · Zbl 0097.35408
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.