Overimplicit multistep methods. (English) Zbl 0298.65052


65L05 Numerical methods for initial value problems involving ordinary differential equations
65J99 Numerical analysis in abstract spaces
Full Text: DOI EuDML


[1] I. Babuška M. Práger, E. Vitásek: Numerical processes in differential equations. Interscience publishers, London, New York, Sydney (1966). · Zbl 0156.16003
[2] G. Birkhoff, R. S. Varga: Discretization errors for well-set Cauchy problems I. J. Math, and Phys. 44 (1965), 1-23. · Zbl 0134.13406
[3] G. Dahlquist: A special stability problem for linear multistep methods. BIT 3 (1963), 27-43. · Zbl 0123.11703 · doi:10.1007/BF01963532
[4] F. R. Gantmacher (Ф. Р. Гантмахер): Теория матриц. Hauka, Москва (1966). · Zbl 0136.00410
[5] P. Henrici: Discrete variable methods in ordinary differential equations. J. Wiley & Sons, Inc., New York, London (1962). · Zbl 0112.34901
[6] J. Taufer (И. Тауфер): Об одном обобщенном многошаговом методе, сб. Применение функциональных методов к краевым задачам математической физики. Новосибирск (1972). · Zbl 0262.65050
[7] R. S. Varga: Matrix iterative analysis. Prentice-Hall, Inc., Englewood Cliffs, New Jersey (1962). · Zbl 0133.08602
[8] E. Vitásek (E. Bntacek): Строго неявные методы для решения дифференциальных уравнений. сб. Применение функциональных методов к краевым задачам математической физики, Новосибирск (1972).
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.