×

zbMATH — the first resource for mathematics

Interior estimates for Ritz-Galerkin methods. (English) Zbl 0298.65071

MSC:
65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
65N15 Error bounds for boundary value problems involving PDEs
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Shmuel Agmon, Lectures on elliptic boundary value problems, Prepared for publication by B. Frank Jones, Jr. with the assistance of George W. Batten, Jr. Van Nostrand Mathematical Studies, No. 2, D. Van Nostrand Co., Inc., Princeton, N.J.-Toronto-London, 1965. · Zbl 0142.37401
[2] J. P. AUBIN, ”Approximation des problèmes aux limites non homogènes et régularité de la convergence,” Calcolo, v. 6, 1969, pp. 117–139. · Zbl 0201.12601
[3] I. BABUŠKA, The Finite Element Method with Lagrangian Multipliers, Technical Note BN-724, Institute for Fluid Dynamics and Appl. Math., University of Maryland, College Park, Md., 1972.
[4] I. BABUŠKA, Numerical Solution of Boundary Value Problems by the Perturbed Variational Principle, Technical Note BN-624, University of Maryland, College Park, Md., 1969.
[5] Ju. M. Berezans\(^{\prime}\)kiĭ, Expansions in eigenfunctions of selfadjoint operators, Translated from the Russian by R. Bolstein, J. M. Danskin, J. Rovnyak and L. Shulman. Translations of Mathematical Monographs, Vol. 17, American Mathematical Society, Providence, R.I., 1968.
[6] J. H. Bramble and S. R. Hilbert, Bounds for a class of linear functionals with applications to Hermite interpolation, Numer. Math. 16 (1970/1971), 362 – 369. · Zbl 0214.41405 · doi:10.1007/BF02165007 · doi.org
[7] J. H. Bramble and J. E. Osborn, Rate of convergence estimates for nonselfadjoint eigenvalue approximations, Math. Comp. 27 (1973), 525 – 549. · Zbl 0305.65064
[8] James H. Bramble and Miloš Zlámal, Triangular elements in the finite element method, Math. Comp. 24 (1970), 809 – 820. · Zbl 0226.65073
[9] R. B. Kellogg, Higher order singularities for interface problems, The mathematical foundations of the finite element method with applications to partial differential equations (Proc. Sympos., Univ. Maryland, Baltimore, Md., 1972) Academic Press, New York, 1972, pp. 589 – 602. · Zbl 0262.35013
[10] R. B. KELLOGG, Interpolation Between Subspaces of a Hilbert Space, Technical Note BN-719, Institute for Fluid Dynamics and Appl. Math., University of Maryland, College Park, Md., 1972.
[11] J.-L. Lions and E. Magenes, Problèmes aux limites non homogènes et applications. Vol. 1, Travaux et Recherches Mathématiques, No. 17, Dunod, Paris, 1968 (French). · Zbl 0212.43801
[12] J. Nitsche, Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind, Abh. Math. Sem. Univ. Hamburg 36 (1971), 9 – 15 (German). Collection of articles dedicated to Lothar Collatz on his sixtieth birthday. · Zbl 0229.65079 · doi:10.1007/BF02995904 · doi.org
[13] J. Nitsche, On Dirichlet problems using subspaces with nearly zero boundary conditions, The mathematical foundations of the finite element method with applications to partial differential equations (Proc. Sympos., Univ. Maryland, Baltimore, Md., 1972) Academic Press, New York, 1972, pp. 603 – 627. · Zbl 0271.65059
[14] J. Nitsche, Umkehrsätze für Spline-Approximationen, Compositio Math. 21 (1969), 400 – 416 (German, with English summary). · Zbl 0199.39302
[15] J. Nitsche, Ein Kriterium für die Quasi-Optimalität des Ritzschen Verfahrens, Numer. Math. 11 (1968), 346 – 348 (German). · Zbl 0175.45801 · doi:10.1007/BF02166687 · doi.org
[16] Joachim A. Nitsche, Interior error estimates of projection methods, Proceedings of Equadiff III (Third Czechoslovak Conf. Differential Equations and their Applications, Brno, 1972) Purkyně Univ., Brno, 1973, pp. 235 – 239. Folia Fac. Sci. Natur. Univ. Purkynianae Brunensis, Ser. Monograph., Tomus 1.
[17] J. Nitsche and A. Schatz, On local approximation properties of \?\(_{2}\)-projection on spline-subspaces, Applicable Anal. 2 (1972), 161 – 168. Collection of articles dedicated to Wolfgang Haack on the occasion of his 70th birthday. · Zbl 0239.41007 · doi:10.1080/00036817208839035 · doi.org
[18] L. SERBIN, A Computational Investigation of Least Squares and Other Projection Methods for the Approximate Solution of Boundary Value Problems, Doctoral Thesis, Cornell University, Ithaca, N. Y., 1971.
[19] Approximations with special emphasis on spline functions, Proceedings of a Symposium Conducted by the Mathematics Research Center, United States Army, at the University of Wisconsin, Madison, May 5 – 7, 1969. Edited by I. J. Schoenberg. Publication No. 23 of the Mathematics Research Center, United States Army, The University of Wisconsin, Academic Press, New York-London, 1969.
[20] Vidar Thomée and Bertil Westergren, Elliptic difference equations and interior regularity, Numer. Math. 11 (1968), 196 – 210. · Zbl 0159.38204 · doi:10.1007/BF02161842 · doi.org
[21] Vidar Thomée, Discrete interior Schauder estimates for elliptic difference operators., SIAM J. Numer. Anal. 5 (1968), 626 – 645. · Zbl 0176.15901 · doi:10.1137/0705050 · doi.org
[22] Miloš Zlámal, A finite element procedure of the second order of accuracy, Numer. Math. 14 (1969/1970), 394 – 402. · Zbl 0209.18002 · doi:10.1007/BF02165594 · doi.org
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.