Boasson, L. Two iteration theorems for some families of languages. (English) Zbl 0298.68053 J. Comput. Syst. Sci. 7, 583-596 (1973). Page: −5 −4 −3 −2 −1 ±0 +1 +2 +3 +4 +5 Show Scanned Page Cited in 18 Documents MSC: 68Q45 Formal languages and automata Software:ALGOL 60 PDF BibTeX XML Cite \textit{L. Boasson}, J. Comput. Syst. Sci. 7, 583--596 (1973; Zbl 0298.68053) Full Text: DOI References: [1] Boasson, L., An iteration theorem for one-counter languages, (Third Annual ACM Symposium on Theory of Computing (1970)), 116-120 · Zbl 0271.68055 [3] Boasson, L.; Nivat, M., Sur les images par transductions de familles de langages, Acta Informatica, 2, 180-188 (1973) · Zbl 0242.68037 [4] Clifford, A. H.; Preston, G. B., (The Algebraic Theory of Semigroups, Vol. 1 (1961), American Mathematical Society: American Mathematical Society Providence, R. I.) · Zbl 0111.03403 [5] Eilenberg, S., Algebraic aspects of automata theory, Actes Congr. Intern. Math. Nice 1970, 3, 265-267 (1971), Gautheir-Villars, Paris [7] Eilenberg, S.; Schutzenberger, M. P., Rational sets in commutative monoids, J. Algebra, 13, 173-191 (1969) · Zbl 0206.02703 [8] Elgot, C. C.; Mezei, J. E., On relations defined by generalized finite automata, IBM J. Res. Develop., 9, 47-48 (1962) · Zbl 0135.00704 [9] Ginsburg, S., (The Mathematical Theory of Context-Free Languages (1966), McGraw-Hill: McGraw-Hill New York) · Zbl 0184.28401 [10] Ginsburg, S.; Greibach, S., Principal AFL, J. Comput. System Sci., 4, 308-338 (1970) · Zbl 0198.03102 [11] Ginsburg, S.; Greibach, S.; Hopcroft, J., Studies in Abstract Families of Languages, (Memoirs of the American Mathematical Society No. 87 (1969), American Mathematical Society: American Mathematical Society Providence, R. I.) · Zbl 0194.31402 [12] Ginsburg, S.; Spanier, E. H., Bounded algol-like languages, Trans. Amer. Math. Soc., 113, 285-296 (1966) · Zbl 0143.01602 [13] Greibach, S., An infinite hierachy of context free languages, J. Assoc. Comput. Mach., 16, 91-106 (1969) · Zbl 0182.02002 [14] Nivat, M., Transduction des languages de Chomsky, Ann. Inst. Fourier (Grenoble), 18, 339-455 (1968) [15] Nivat, M.; Perrot, J. F., Une généralisation du monoïde bicyclique, C. R. Acad. Sci. Paris, 271, Ser. A, 824-827 (1970) · Zbl 0206.30304 [16] Ogden, W., An helpful result for proving inherent ambiguity, Math. Systems Theory, 2, 191-194 (1967) · Zbl 0175.27802 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.