×

zbMATH — the first resource for mathematics

Two iteration theorems for some families of languages. (English) Zbl 0298.68053

MSC:
68Q45 Formal languages and automata
Software:
ALGOL 60
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Boasson, L., An iteration theorem for one-counter languages, (), 116-120 · Zbl 0271.68055
[2] \scL. Boasson, Une caractérisation algébrique des languages à compteur (to appear)
[3] Boasson, L.; Nivat, M., Sur LES images par transductions de familles de langages, Acta informatica, 2, 180-188, (1973) · Zbl 0242.68037
[4] Clifford, A.H.; Preston, G.B., ()
[5] Eilenberg, S., Algebraic aspects of automata theory, Actes congr. intern. math. Nice 1970, 3, 265-267, (1971), Gautheir-Villars, Paris
[6] \scS. Eilenberg, Private communication.
[7] Eilenberg, S.; Schutzenberger, M.P., Rational sets in commutative monoids, J. algebra, 13, 173-191, (1969) · Zbl 0206.02703
[8] Elgot, C.C.; Mezei, J.E., On relations defined by generalized finite automata, IBM J. res. develop., 9, 47-48, (1962) · Zbl 0135.00704
[9] Ginsburg, S., ()
[10] Ginsburg, S.; Greibach, S., Principal AFL, J. comput. system sci., 4, 308-338, (1970) · Zbl 0198.03102
[11] Ginsburg, S.; Greibach, S.; Hopcroft, J., Studies in abstract families of languages, () · Zbl 0194.31402
[12] Ginsburg, S.; Spanier, E.H., Bounded algol-like languages, Trans. amer. math. soc., 113, 285-296, (1966) · Zbl 0143.01602
[13] Greibach, S., An infinite hierachy of context free languages, J. assoc. comput. Mach., 16, 91-106, (1969) · Zbl 0182.02002
[14] Nivat, M., Transduction des languages de chomsky, Ann. inst. Fourier (Grenoble), 18, 339-455, (1968)
[15] Nivat, M.; Perrot, J.F., Une généralisation du monoïde bicyclique, C. R. acad. sci. Paris, 271, Ser. A, 824-827, (1970) · Zbl 0206.30304
[16] Ogden, W., An helpful result for proving inherent ambiguity, Math. systems theory, 2, 191-194, (1967) · Zbl 0175.27802
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.