Cea, J.; Glowinski, R. Méthodes numériques pour l’ecoulement laminaire d’un fluide rigide viscoplastique incompressible. (French) Zbl 0298.76004 Int. J. Computer Math. 3, 225-255 (1972). Page: −5 −4 −3 −2 −1 ±0 +1 +2 +3 +4 +5 Show Scanned Page Cited in 7 Documents MSC: 76A99 Foundations, constitutive equations, rheology, hydrodynamical models of non-fluid phenomena 76D10 Boundary-layer theory, separation and reattachment, higher-order effects 46E30 Spaces of measurable functions (\(L^p\)-spaces, Orlicz spaces, Köthe function spaces, Lorentz spaces, rearrangement invariant spaces, ideal spaces, etc.) 46A03 General theory of locally convex spaces 65D25 Numerical differentiation PDF BibTeX XML Cite \textit{J. Cea} and \textit{R. Glowinski}, Int. J. Comput. Math. 3, 225--255 (1972; Zbl 0298.76004) Full Text: DOI References: [1] Aubin J.P., Bull. Soc. Math. France, Mémoire 12 (1967) [2] Brezis H. Communication personnelle [3] DOI: 10.5802/aif.181 · Zbl 0127.08003 [4] Cea J., Optimisation: Théorie et Algorithmes (1971) [5] Duvaut G., C.R. Acad. Sci. Paris 270 pp 58– (1970) [6] Duvaut G., Applications des inéquations à des problèmes de Mécanique et de Physique–Livre à paraître [7] Godounov-Prokopov, Institut des Mathé-matiques Appliquées de I’Académic des Sciences de I’U.R.S.S. (1968) [8] Goldstein A.A., Constructive real analysis-Harper and Row (1967) [9] Goursat M., Analyse numérique de problèmes d’Elastoplasticité et de visco-plasticité. Thèse de 3ème cycle (1971) [10] Ky-Fan, C.R. Acad. Sci. Paris 259 pp 3925– (1964) [11] Lions J.L., Contrôle optimal de systèmes gouvernés par des équations aux dérivées partielles (1968) [12] Mossolov-Miasnikov, Math. Appl. et Mecanique, tome 30 (1966) [13] Temam R. Solutions généralisées d’equations non linéaires non uniformément elliptiques A paraitre [14] Uzawa H., Studies in linear and non linear programming (1958) · Zbl 0091.16002 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.