×

zbMATH — the first resource for mathematics

Complete groups of odd order. (English) Zbl 0299.20016

MSC:
20D35 Subnormal subgroups of abstract finite groups
20D45 Automorphisms of abstract finite groups
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] M. I. Kargapolov and Yu. I. Merzlyakov, Foundations of the Theory of Groups [in Russian], Nauka (1972).
[2] M. Hall, The Theory of Groups, Macmillan (1959). · Zbl 0084.02202
[3] M. V. Khoroshevskii, ”Automorphism groups of finitep-groups,” Algebra i Logika,10, No. 1, 81-86 (1971).
[4] M. V. Khoroshevskii, ”The automorphism group of the wreath product of finite groups,” Sibirsk. Matem. Zh.,14, No. 3, 651-659 (1973).
[5] O. Yu. Schmidt, ”Abstract group theory,” in: Selected Works. Mathematics, O. Yu. Schmidt, editor [in Russian], Izd-vo AN SSSR (1959), pp. 17-175.
[6] B. H. Neumann and H. Neumann, ”Embedding theorems for groups,” J. London Math. Soc.,34, No. 4, 465-479 (1959). · Zbl 0102.26401
[7] P. Neumann, ”On the structure of standard wreath products of groups,” Math. Zeit.,84, No. 4, 343-373 (1964). · Zbl 0122.02901
[8] C. H. Houghton, ”On the automorphism groups of certain wreath products,” Publ. Math.,9, Nos. 3-4, 307-313 (1962). · Zbl 0118.26702
[9] J. S. Rose, ”A subnormal embedding theorem for finite groups,” J. London Math. Soc. (2),5, No. 2, 253-259 (1972). · Zbl 0245.20022
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.