Menendez, Santiago Carrillo Processus de Markov associe à une forme de Dirichlet non symétrique. (French) Zbl 0299.60058 Z. Wahrscheinlichkeitstheor. Verw. Geb. 33, 139-154 (1975). Page: −5 −4 −3 −2 −1 ±0 +1 +2 +3 +4 +5 Show Scanned Page Cited in 19 Documents MSC: 60J45 Probabilistic potential theory 31C25 Dirichlet forms × Cite Format Result Cite Review PDF Full Text: DOI References: [1] Ancona, A.: Théorie du potentiel dans les espaces fonctionnels à forme coercive. Paris, secrétariat de l’équipe d’Analyse et de Théorie du potentiel [2] Beuerling, A.; Deny, J., Dirichlet spaces, Proc. Nat. Acad. Sci. USA, 45, 208-215 (1959) · Zbl 0089.08201 [3] Bliedtner, J., “Functional spaces and their exceptional sets“ et “Dirichlet forms on regular functional spaces” (1971), Berlin, Heidelberg, New York: Springer, Berlin, Heidelberg, New York [4] Blumenthal, R. M.; Getoor, R. K., Markov processes and potential theory (1968), New York: Academic Press, New York · Zbl 0169.49204 [5] Carrillo-Menendez, S., Note aux C.R. Acad. Sci. Paris Sér. A-B, 279, 615-618 (1974) · Zbl 0294.60059 [6] Deny, J., Principle complet du maximum et contractions, Ann. Inst. Fourier (Grenoble), 15, 259-272 (1965) · Zbl 0144.15504 [7] Deny, J.: Théorie de la capacité dans les espaces fonctionnels. Séminaire Brelot-Choquet-Deny, 9^èmeànnée(1964-65), exposé 1 · Zbl 0138.36605 [8] Deny, J., Méthodes hilbertiennes en théorie du potentiel. C.I.M.E (1969), Rome: Ed. Cremonese, Rome · Zbl 0212.13401 [9] Forst, G., Symmetric harmonic groups and translation invariant Dirichlet spaces, Invent. Math., 18, 143-182 (1972) · Zbl 0242.31011 [10] Fukushima, M., Regular representation of Dirichlet spaces, Trans. Amer. Math. Soc., 155, 455-473 (1971) · Zbl 0248.31007 [11] Fukushima, M., Dirichlet spaces and strong Markov processes, Trans. Amer. Math. Soc., 162, 185-224 (1971) · Zbl 0254.60055 [12] Fukushima, M., On the generation of Markov processes by symmetric forms (1973), Berlin, Heidelberg, New York: Springer, Berlin, Heidelberg, New York · Zbl 0262.60054 [13] Fukushima, M., Local property of Dirichlet forms and continuity of sample paths, Z. Wahrschein-lichkeitstheorie verw. Gebiete, 29, 1-6 (1974) · Zbl 0283.60067 [14] Ikeda, N.; Watanabe, S., The local structure of a class of diffusions and related problems, Proc. Sec. Japan USSR Symp. Probab. Theory (1973), Berlin, Heidelberg, New York: Springer, Berlin, Heidelberg, New York · Zbl 0264.60052 [15] Knight, F., Note on regularization of Markov processes, Illinois J. Math., 9, 548-552 (1965) · Zbl 0143.20002 [16] Kunita, H.: Sub Markov semi-groups in Banach lattices. Proc. Int. Conf. functional Analysis and related topics, Tokyo 1969 · Zbl 0193.42402 [17] Kunita, H., General boundary conditions for multi-dimensional diffusion processes, J. Math. Kyoto Univ., 10, 273-335 (1970) · Zbl 0204.41502 [18] Kunita, H., Watanabe, T.: Some theorems concerning resolvents over locally compact spaces. Proc. 5th Berkeley Sympos. Math. Statist. Probab., Univ. Calif. 1965/66. Vol. II: Contributions to Probability theory, part 2; University of California Press, 1967 · Zbl 0221.60044 [19] Mokobodzki, G.: Compactification associée à une résolvante. Séminaire Goulaouic Schwartz, 1971-72 · Zbl 0273.60059 [20] Meyer, P. A., Probabilités et potentiels (1966), Paris: Hermann, Paris · Zbl 0138.10402 [21] Meyer, P. A., Processus de Markov (1967), Berlin, Heidelberg, New York: Springer, Berlin, Heidelberg, New York · Zbl 0189.51403 [22] Priouret, P., Courrege, Ph.: Axiomatique du probl^ème de Dirichlet et processus de Markov. Séminaire Brelot-Choquet-Deny 8ème année, Paris (1963-64) [23] Neveu, J., Bases Mathématiques du Calcul des Probabilités (1970), Paris: Masson, Paris · Zbl 0203.49901 [24] Ray, D., Resolvents, transition function, and strongly Markovian processes, Ann. Math., 70, 43-72 (1959) · Zbl 0092.34501 [25] Silverstein, M. L., Dirichlet spaces and random time charge, Illinois J. Math., 17, 1-72 (1973) · Zbl 0275.60092 [26] Shiga, T.; Watanabe, T., On Markov chains similar to the reflecting barrier brownian motion, Osaka J. Math., 5, 1-38 (1968) · Zbl 0301.60044 [27] Stampacchia, G.: Equations elliptiques du second ordre à coefficients discontinuous. Montréal: Presses de l’Université 1965 [28] Stampacchia, G., Ann. Inst. Fourier, 15, 189-259 (1965) [29] Walsh, J. B.; Meyer, P. A., Quelques applications des résolvantes de Ray, Invent. Math., 14, 143-166 (1971) · Zbl 0224.60037 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.