×

zbMATH — the first resource for mathematics

Smoothing noisy data with spline functions. (English) Zbl 0299.65008

MSC:
65D10 Numerical smoothing, curve fitting
41A05 Interpolation in approximation theory
PDF BibTeX XML Cite
Full Text: DOI EuDML
References:
[1] Anderssen, R. S., Bloomfield, P.: A time series approach to numerical differentiation. Technometrics,16, 69-75 (1974) · Zbl 0286.65012
[2] Anderssen, R. S., Bloomfield, P.: Numerical differentiation procedures for nonexact data. Numer. Math.22, 157-182 (1974) · Zbl 0281.65012
[3] Cogburn, R., Davis, H. T.: Periodic Splines and Spectral Estimation. Ann. Statist.2, 1108-1126 (1974) · Zbl 0302.62049
[4] Golomb, M.: Approximation by periodic spline interpolants on uniform meshes. J. Approx. Thy.1, 26-65 (1968) · Zbl 0185.30901
[5] Kershaw, D.: A note on the convergence of interpolatory cubic splines, Siam J. Numer. Anal.,8, 67-74 (1971) · Zbl 0219.65013
[6] Kimeldorf, G., Wahba, G.: Some results on Tchebycheffian spline functions, J. Math. Anal. Appl.33, 82-95 (1971) · Zbl 0201.39702
[7] Jolley, L. B. W.: Summation of Series. Second revised ed., Dover, New York 1961. · Zbl 0101.28602
[8] Reinsch, C. H.: Smoothing by spline functions. Numer Math.10, 177-183 (1967) · Zbl 0161.36203
[9] Reinsch, C. H.: Smoothing by Spline Functions. II. Numer. Math.16, 451-454 (1971) · Zbl 1248.65020
[10] Schoenberg, I. J.: Spline functions and the problem of graduation. Proc. Nat. Acad. Sci. (U.S.A.)52, 947-950 (1964) · Zbl 0147.32102
[11] Schultz, M.: Error bounds for polynomial spline interpolation. Math. Comp.24, 111, 507-515 (1970) · Zbl 0216.23002
[12] Snowden, M.: M.S. Thesis, in preparation
[13] Wahba, G.: Convergence properties of the method of regularization for noisy linear operator equations, Univ. of Wisconsin Mathematics Research Center TSR 1132 (1973) · Zbl 0267.45015
[14] Wahba, G., Wold, S.: A completely automatic French curve: Fitting spline functions by cross-validation. Communications in Statistics4, 1-17 (1975) · Zbl 0305.62043
[15] Wahba, G., Wold, S.: Periodic splines for spectral density estimation: The use of cross validation for determining the degree of smoothing. Communications in Statistics4 (2), 125-141 (1975) · Zbl 0305.62060
[16] Wiencke, B.: ?The roundoff: A Mechanical Analysis of a Skillfully Executed Gymnastic Stunt?, unpublished M. S. thesis, Women’s Physical Education Department University of Wisconsin, Madison (1972)
[17] Wold, S.: Spline functions in data analysis, Technometrics16, 1-11 (1974) · Zbl 0285.65010
[18] Wold, S.: Estimation of activation parameters from one kinetic experiment (Varytemp method). Error analysis and revised computer program. Acta. Chem. Scand.25, 336-339 (1971)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.