×

zbMATH — the first resource for mathematics

C-polynomials for rational approximation to the exponential function. (English) Zbl 0299.65010

MSC:
65D10 Numerical smoothing, curve fitting
41A20 Approximation by rational functions
PDF BibTeX XML Cite
Full Text: DOI EuDML
References:
[1] Ahlfors, L. V.: Complex Analysis. McGraw-Hill, New York 1953 · Zbl 0052.07002
[2] Axelsson, O.: A class ofA-stable methods. BIT 9 (1965) pp. 185-199 · Zbl 0208.41504 · doi:10.1007/BF01946812
[3] Blue, J. L., Gummel, H. K.: Rational Approximations to Matrix Exponential for Systems of Stiff Differential Equations. J. of Comp. Phy. V. 5, No. 1 (1970) pp. 70-83 · Zbl 0185.41204 · doi:10.1016/0021-9991(70)90053-7
[4] Chipman, F. H.: Numerical Solution of Initial Value Problems UsingA-stable Runge-Kutta Processes. Ph. D. Thesis, University of Waterloo, Waterloo, Ontario 1971 · Zbl 0265.65035
[5] Dahlquist, G. G.: A special stability problem for linear multistep methods. BIT V. 3 (1963), pp. 27-43 · Zbl 0123.11703 · doi:10.1007/BF01963532
[6] Ehle, B. L.: On Padé Approximations to the Exponential Function andA-stable Methods for the Numerical Solution of Initial Value Problems. Ph. D. Thesis, University of Waterloo, Waterloo, Ontario 1969
[7] Lambert, J. D., Sigurdsson, S. T.: Multistep Methods with Variable Matrix Coefficients. SIAM J. Num. Anal. V. 9 (1972), pp. 715-733 · Zbl 0246.65024 · doi:10.1137/0709060
[8] Lanczos, C.: Applied Analysis. Pitman, 1957 · Zbl 0111.12403
[9] Lawson, J. D.: Generalized Runge-Kutta processes for stable systems with large Lipschitz constants. SIAM J. Num. Anal. V. 4 (1967), pp. 372-380 · Zbl 0223.65030 · doi:10.1137/0704033
[10] Lawson, J. D.: Order Constrained Chebyshev Rational Approximation. To appear · Zbl 0671.41008
[11] Liniger, W.: Global accuracy andA-stability of one- and two-step integration formulae for stiff ordinary differential equations. Conference on the Numerical Solution of Differential Equations. Springer-Verlag, Berlin, 1969, pp. 188-193
[12] Liniger, W., Willoughby, R. A.: Efficient integration methods for stiff ordinary differential equations. SIAM J. Num. Anal. V. 7 (1970), pp. 47-66 · Zbl 0187.11003 · doi:10.1137/0707002
[13] Nørsett, S. P.: One-step Methods of Hermite Type for Numerical Integration of Stiff Systems. To appear in BIT · Zbl 0278.65078
[14] Padé, H.: Sur la Représentation Ápprochée d’une Function par des Fractions Rationelles. Thesis, Ann de l’Ec Nor, Vol. 9, No. 3 (1892)
[15] Rainville, F. D.: Special Functions. MacMillan Com. New York 1960 · Zbl 0092.06503
[16] Sigurdsson, S. T.: Multistep Methods with Variable Matrix Coefficients for Systems of Ordinary Differential Equations. Thesis, University of Dundee, Dundee · Zbl 0227.65045
[17] Silverman, R. A.: Introductory Complex Analysis. Prentice Hall Inc. 1967 · Zbl 0145.29804
[18] Cody, W. J., Meinardus, G., Varga, R. S.: Chebyshev Rational Approximations to exp (?x) on [0, ?? and applications to Heat-Conduction Problems. J. of Approx. Th. V. 2, (1969), pp. 50-65 · Zbl 0187.11602 · doi:10.1016/0021-9045(69)90030-6
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.