×

zbMATH — the first resource for mathematics

Rates of convergence for a method of centers algorithm. (English) Zbl 0299.65036

MSC:
65K05 Numerical mathematical programming methods
90C30 Nonlinear programming
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Huard, P.,Resolution of Mathematical Programming with Nonlinear Constraints by the Method of Centers, Nonlinear Programming, Edited by J. Abadie, North-Holland Publishing Company, Amsterdam, Holland, 1967. · Zbl 0157.49701
[2] Faure, P., andHuard, P.,Résultats Nouveaux Relatifs à la Méthode des Centres, Paper Presented at Fourth International Conference on Operations Research, Boston, Massachusetts, 1966.
[3] Bui-Trong-Lieu, andHuard, P.,La Méthode des Centres dans un Espace Topologique, Numerische Mathematik, Vol. 8, pp. 56-67, 1966. · Zbl 0171.40802
[4] Tremolières, R.,La Méthode des Centres à Troncature Variable, University of Paris, Doctoral Thesis, 1968.
[5] Kleibohm, K.,Äquivalence eines Optimierungsproblems mit Restriktionen und einer Folge von Optimierungsproblemen ohne Restriktionen, Unternehmensforschung, Vol. 11, pp. 111-118, 1967. · Zbl 0158.18901
[6] Pironneau, O., andPolak, E.,On the Rate of Convergence of Certain Methods of Centers, Mathematical Programming, Vol. 2, pp. 230-257, 1972. · Zbl 0248.90048
[7] Polak, E.,Computational Methods in Optimization, Academic Press, New York, New York, 1971. · Zbl 0257.90055
[8] Zangwill, W. I.,Nonlinear Programming: A Unified Approach, Prentice-Hall, Englewood Cliffs, New Jersey, 1969. · Zbl 0195.20804
[9] Huard, P.,Programmation Mathématique Convexe, Revue Francaise d’Informatique et de Recherche Opérationnelle, Vol. 7, pp. 43-59, 1968.
[10] Topkis, D. M., andVeinott, A. F.,On the Convergence of Some Feasible Direction Algorithms for Nonlinear Programming, SIAM Journal on Control, Vol. 5, pp. 268-279, 1967. · Zbl 0158.18805
[11] Fiacco, A. V., andMcCormick, G. P.,The Sequential Unconstrained Minimization Technique Without Parameters, Operations Research, Vol. 15, pp. 820-827, 1967. · Zbl 0171.17905
[12] Fiacco, A. V., andMcCormick, G. P.,Nonlinear Programming: Sequential Unconstrained Minimization Techniques, John Wiley and Sons, New York, New York, 1968. · Zbl 0193.18805
[13] Fiacco, A. V.,Sequential Unconstrained Minimization Methods for Nonlinear Programming, Northwestern University, Evanston, Illinois, PhD Thesis, 1967. · Zbl 0183.22801
[14] Frisch, K. R.,Principles of Linear Programming with Particular Reference to the Double Gradient Form of the Logarithmic Potential Method, University of Oslo, Institute of Economics, Memorandum, October 18, 1954.
[15] Frisch, K. R.,The Logarithmic Potential Method of Convex Programming, University of Oslo, Institute of Economics, Memorandum, May 13, 1955.
[16] Parisot, G. R.,Résolution Numerique Approchée du Problème de Programmation Linéaire par Application de la Programmation Logarithmique, Revue Francaise d’Informatique et de Recherche Opérationnelle, Vol. 20, pp. 227-259, 1961.
[17] Lootsma, F. A.,Logarithmic Programming: A Method of Solving Nonlinear Programming Problems, Philips Research Reports, Vol. 22, pp. 329-344, 1967. · Zbl 0308.90034
[18] Lootsma, F. A.,Extrapolation in Logarithmic Programming, Philips Research Reports, Vol. 23, pp. 108-116, 1968. · Zbl 0231.90054
[19] Carroll, C. W.,The Created Response Surface Technique for Optimizing Nonlinear Restrained Systems, Operations Research, Vol. 9, pp. 169-184, 1961. · Zbl 0111.17004
[20] Fiacco, A. V., andMcCormick, G. P.,The Sequential Unconstrained Minimization Technique for Nonlinear Programming, A Primal-Dual Method, Management Science, Vol. 10, pp. 360-366, 1964.
[21] Fiacco, A. V., andMcCormick, G. P.,Computational Algorithm for the Sequential Unconstrained Minimization Technique for Nonlinear Programming, Management Science, Vol. 10, pp. 601-617, 1964.
[22] John, F.,Extremum Problems with Inequalities as Subsidiary Conditions, Studies and Essays, Courant Anniversary Volume, John Wiley and Sons (Interscience Publishers), New York, New York, pp. 187-204, 1948.
[23] Mangasarian, O. L.,Pseudo-Convex Functions, SIAM Journal on Control, Vol. 3, pp. 281-290, 1965. · Zbl 0138.15702
[24] Kuhn, H. W., andTucker, A. W.,Nonlinear Programming, Proceedings of the Second Berkeley Symposium in Mathematical Statistics and Probability, Edited by J. Neyman, University of California Press, Berkeley, California, 1951.
[25] Mifflin, R.,Convergence Bounds for Nonlinear Programming Algorithms, Mathematical Programming, Vol. 8, pp. 251-271, 1975. · Zbl 0326.90055
[26] Lootsma, F. A.,Boundary Properties of Penalty Functions for Constrained Minimization, Philips Research Reports, Supplement No. 3, 1970. · Zbl 0242.90020
[27] Faure, P.,Note Sur la Rapidité de la Convergence de la Méthode des Centres, Electricité de France, Note EDF No. HR-7504/5, 1975.
[28] Lootsma, F. A.,Constrained Optimization via Parameter-Free Penalty Functions, Philips Research Reports, Vol. 23, pp. 424-437, 1968. · Zbl 0231.90047
[29] Poljak, B. T.,Existence Theorems and Convergence of Minimizing Sequences in Extremum Problems with Restrictions, Soviet Mathematics, Vol. 7, pp. 72-75, 1966. · Zbl 0171.09501
[30] Topkis, D. M.,Cutting Plane Methods Without Nested Constraint Sets, Operations Research, Vol. 18, pp. 404-413, 1970. · Zbl 0205.21903
[31] Rockafellar, R. T.,Convex Analysis, Princeton University Press, Princeton, New Jersey, 1970. · Zbl 0193.18401
[32] Lootsma, F. A.,Constrained Optimization via Penalty Functions, Philips Research Reports, Vol. 23, pp. 408-423, 1968. · Zbl 0231.90046
[33] Kortanek, K. O., andEvans, J. P.,Pseudo-Concave Programming and Lagrange Regularity, Operations Research, Vol. 15, pp. 882-891, 1967. · Zbl 0149.38006
[34] Mangasarian, O. L.,Nonlinear Programming, McGraw-Hill Book Company, New York, New York, 1969.
[35] Penrose, R.,A Generalized Inverse for Matrices, Proceedings of the Cambridge Philosophical Society, Vol. 51, pp. 406-413, 1955. · Zbl 0065.24603
[36] Mifflin, R.,Subproblem and Overall Convergence for a Method of Centers Algorithm, Operations Research, Vol. 23, pp. 796-809, 1975. · Zbl 0322.90050
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.