×

On pointwise convergence, compactness, and equicontinuity. II. (English) Zbl 0301.46032


MSC:

46G15 Functional analytic lifting theory
28A20 Measurable and nonmeasurable functions, sequences of measurable functions, modes of convergence
60A05 Axioms; other general questions in probability
60B10 Convergence of probability measures
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Bourbaki, N., Intégration (1959-1968), Hermann: Hermann New Haven, CT · Zbl 0115.04903
[2] Chatterji, S. D., Un principe de sous-suites dans la théorie des probabilités, “Séminaire de Probabilités VI, Université de Strasbourg, ((1972), Springer-Verlag: Springer-Verlag Paris), 72-89 · Zbl 0229.60001
[3] Dunford, N.; Schwartz, J. T., Linear Operators, Part I (1958), Interscience: Interscience New York · Zbl 0084.10402
[4] Tulcea, A. Ionescu; Tulcea, C. Ionescu, Topics in the Theory of Lifting (1969), Springer-Verlag: Springer-Verlag New York · Zbl 0179.46303
[5] Tulcea, A. Ionescu, On pointwise convergence, compactness and equicontinuity in the lifting topology (I), Z. Wahrscheinlichkeitstheorie und Verw. Gebiete, 26, 197-205 (1973) · Zbl 0289.46030
[6] Komlós, J., A generalization of a problem of Steinhaus, Acta Math. Acad. Sci. Hungary, 18, 217-229 (1967) · Zbl 0228.60012
[7] Meyer, P. A., Représentation intégrale des fonctions excessives. Résultats de Mokobodzki, “Séminaire de Probabilités V, Université de Strasbourg”, ((1971), Springer-Verlag: Springer-Verlag New York), 196-208 · Zbl 0217.20902
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.