\(L_\infty\)-convergence of collocation and Galerkin approximations to linear two-point parabolic problems. (English) Zbl 0301.65064


65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
65N35 Spectral, collocation and related methods for boundary value problems involving PDEs
35K20 Initial-boundary value problems for second-order parabolic equations
65M20 Method of lines for initial value and initial-boundary value problems involving PDEs
39B42 Matrix and operator functional equations
Full Text: DOI EuDML


[1] Ahlberg J. H., Hilson, E. N. andWalsh, J. L.,The Theory of Splines and Their Applications (Academic Press, N.Y. 1967).
[2] Bellman R. E.,Introduction to Matrix Analysis (McGraw-Hill, N. Y. 1970). · Zbl 0216.06101
[3] Birkhoff, G. andVarga, R. S.,Discretization Errors for Well-set Cauchy Problems, I, J. Math. and Phys.44, 1–23 (1965). · Zbl 0134.13406
[4] Birkhoff, G. andDe Boor, C.,Piecewise Polynomial Interpolation and Approximation [In Approximation of Functions, pp. 164–190] (H. Garabedian ed., Elsevier, Amsterdam 1965). · Zbl 0136.04703
[5] Cavendish, J. C.,Collocation Methods for Elliptic and Parabolic Boundary Value Problems (Ph.D. Dissertation, University of Pittsburgh 1972).
[6] Ciarlet, P. G.,An O(h 2)Method for a Nonsmooth Boundary Value Problem, Aequationes Math.2, 39–49 (1968). · Zbl 0159.11703 · doi:10.1007/BF01833489
[7] Ciarlet, P. G., Schultz, M. M. andVarga, R. S.,Numerical Methods of High-order Accuracy for Nonlinear Boundary Value Problems, I, Numer. Math.9, 394–430 (1967). · Zbl 0155.20403 · doi:10.1007/BF02162155
[8] Corduneanu, C,Principles of Differential and Integral Equations (Allyn and Bacon Inc., Boston 1971). · Zbl 0208.10701
[9] Douglas, J. Jr. andDupont, T.,Galerkin Methods for Parabolic Equations, SIAM J. Numer. Anal.7, 575–626 (1970). · Zbl 0224.35048 · doi:10.1137/0707048
[10] Douglas, J. Jr., andDupont, T.,Finite Element Collocation Methods, in Proceedings of O.N.R. Regional Symposium on the Mathematical Foundations of the Finite Element Method with Applications to Partial Differential Equations, (University of Maryland, Baltimore County, June 26–30, 1972, A. Aziz, ed. Academic Press, N.Y. 1973).
[11] Friedman, A.,Partial Differential Equations of Parabolic Type (Prentice-Hall, Englewood Cliffs 1964). · Zbl 0144.34903
[12] Fyfe, D. J.,The Use of Cubic Splines in the Solution of Two-point Boundary Value Problems, Comput. J.17, 188–192 (1968). · Zbl 0185.41404
[13] Gordon, W. J.,Blending-Function – Methods of Bivariate and Multivariate Interpolation and Approximation, SIAM J. Numer. Anal.8, 158–177 (1971). · Zbl 0237.41008 · doi:10.1137/0708019
[14] Hall, C. A.,Natural Cubic and Bicubic Spline Interpolation SIAM J. Numer. Anal.10, 1055–1059, (1973). · doi:10.1137/0710088
[15] Isaacson, E. andKeller, H. B.,Analysis of Numerical Methods (John Wiley and Sons, Inc., N.Y., 1966).
[16] Lucas, T. R. andReddien, G. W., Jr.,Some Collocation Methods for Nonlinear Boundary Value Problems, SIAM J. Numer. Anal.,9, 341–356 (1972). · Zbl 0266.34024 · doi:10.1137/0709034
[17] Price, H. S. andVarga, R. S.,Error Bounds for Semidiscrete Galerkin Approximations of Parabolic Problems with Applications to Petroleum Reservoir Mechanics [in Numerical Solution of Field Problems in Continuum Physics, pp. 74–79] (G. Birkhoff and R. Varga, eds. A. M. S., Providence 1970).
[18] Russell, R. D. andShampine, L. F.,A Collocation Method for Boundary Value Problems, Numer. Math.19, 1–28 (1972). · Zbl 0221.65129 · doi:10.1007/BF01395926
[19] Varga, R. S.,Matrix Iterative Analysis, Prentice-Hall, Englewood Cliffs, New Jersey (1962). · Zbl 0133.08602
[20] Varga, R. S.,On Higher Order Stable Implicit Methods for Solving Parabolic Partial Differential Equations, J. Math. and Phys.40, 220–231 (1961). · Zbl 0106.10805
[21] Wheeler, M. F.,A priori L 2 Error Estimates for Galerkin Approximations to Parabolic Differential Equations (Ph.D., Rice University, Houston, Texas, 1971).
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.