×

Quasi-concave minimization subject to linear constraints. (English) Zbl 0301.90037


MSC:

90C30 Nonlinear programming
90C25 Convex programming
65K05 Numerical mathematical programming methods
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] characters.., Unreadable; L, O., The fractional fixed charge problem, Naval Res. Logist. Quart., 18, 307-315 (1971)
[2] Balas, E., Intersection cuts — a new type of cutting planes for integers programming, (Management Sci. Research Report No. 187 (October 1969), Carnegie-Mellon University: Carnegie-Mellon University Pittsburgh, Pa) · Zbl 0219.90035
[3] Balinski, M. L., An algorithm for finding all vertices of convex polyhedral sets, J. Soc. Ind. Appl. Math., 9, 72-88 (1961) · Zbl 0108.33203
[4] Balinski, M. L., Fixed cost transportation problems, Naval. Res. Logist. Quart., 8, 41-54 (1961) · Zbl 0106.34801
[5] Balinski, M. L., Integer programming methods, uses, computation, Management Sci., 12, 253-313 (1965) · Zbl 0129.12004
[6] Cabot, V. A., Variations on a cutting plane method for solving concave minimization problems with linear constraints, 41st ORSA Meeting (1972), New Orleans
[7] Cooper, L.; Drebes, C., An approximate solution method for the fixed change problem, Naval Res. Logist. Quart., 14, 101-113 (1967) · Zbl 0154.19601
[8] Dewder, D. R., An approximate algorithm for the fixed change problem, Naval Res. Logist. Quart., 16, 411-416 (1969)
[11] Hirsch, W. M.; Dantag, G. B., The fixed change problem, Naval. Res. Logist. Quart., 9, 413-424 (1958) · Zbl 0167.48201
[12] Tui, Huang, Concave programming under linear constraints, Soviet Math. Dokl., 5, 1937-1940 (1964)
[13] Kuhn, H. W.; Baumel, W. J., An approximate algorithm for the fixed change problem, Naval Res. Logist. Quart., 9, 1-16 (1962)
[14] Murry, K. G., Solving the fixed change problem by ranking the extreme points, Operations Res., 16, 268-279 (1968) · Zbl 0249.90041
[15] Rachavachart, M., On connection between zero-one integer programming and concave programming under linear constraints, Operations Res., 17, 680-686 (1969)
[16] Ritter, K., A method for solving maximum-problems with a nonconcave quadratic objective function, Z. Wahrschemlichkettstheorie Verw. Gebiete, 4, 340-351 (1965) · Zbl 0139.13105
[17] Rostler, M., Fine Methode zur Berechnung des Optimalen Produktionsprogramms bei konkaver Zielfunktion, Untemehmungsforschurg, 15, 103-111 (1971) · Zbl 0213.45703
[18] Van de Panne, C., Linear Programming and Related Techniques (1972), North-Holland: North-Holland Amsterdam
[19] Young, R. O., Hypercylindrically deduced cuts in zero-one integer programs (1970), Rice University: Rice University Houston, Texas · Zbl 0232.90041
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.