zbMATH — the first resource for mathematics

On \(\ell\)-adic representations attached to modular forms. (English) Zbl 0302.10027

11F03 Modular and automorphic functions
11F12 Automorphic forms, one variable
11S31 Class field theory; \(p\)-adic formal groups
14G20 Local ground fields in algebraic geometry
Full Text: DOI EuDML
[1] Deligne, P.: Formes modulaires et représentationsb-adiques. Séminaire Bourbaki 355, Février 1969. Lecture Notes in Mathematics179. Berlin-Heidelberg-New York: Springer 1971
[2] Dickson, L. E.: Linear groups with an exposition of the Galois field theory. Leipzig: Teubner 1901 · JFM 32.0128.01
[3] Dieudonné, J.: La géométrie des groupes classiques. Berlin-Heidelberg-Göttingen: Springer 1955 · Zbl 0067.26104
[4] Hua, L-K.: Supplement to: On the automorphisms of the classical groups, by J. Dieudonné. AMS Memoirs No. 2. New York: AMS 1951
[5] Katz, N.:p-adic properties of modular schemes and modular forms. International Summer School on Modular Functions; Antwerp, 1972. Lecture Notes in Mathematics350, 69-190, 1973
[6] Ribet, K.: Galois action on division points of abelian varieties with many real multiplications. Harvard thesis, 1971. (To appear in revised form)
[7] Serre, J-P.: Abelianl-adic representations and elliptic curves. New York: Benjamin 1968
[8] Serre, J-P.: Propriétés galoisiennes des points d’ordre fini des courbes elliptiques. Inventiones math.15, 259-331 (1972) · Zbl 0235.14012 · doi:10.1007/BF01405086
[9] Serre, J-P.: Congruences et formes modulaires (d’après H.P.F. Swinnerton-Dyer). Séminaire Bourbaki 416, Juin 1972. Lecture Notes in Mathematics317, 319-338, 1973
[10] Shih, K.: On the construction of Galois extensions of function fields and number fields. Princeton thesis, 1972
[11] Swinnerton-Dyer, H.P.F.: Onl-adic representations and congruences for coefficients of modular forms. International Summer School on Modular Functions; Antwerp, 1972. Lecture Notes in Mathematics350, 1-55, 1973 · doi:10.1007/978-3-540-37802-0_1
[12] Wilton, J.R.: Congruence properties of Ramanujan’s function ?(n). Proc. London Math. Soc.31, 1-10 (1928) · JFM 56.0874.02 · doi:10.1112/plms/s2-31.1.1
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.