Class numbers and \(\mathbb Z_p\)-extensions. (English) Zbl 0302.12007


11R29 Class numbers, class groups, discriminants
11R23 Iwasawa theory
11R20 Other abelian and metabelian extensions


Zbl 0089.02402
Full Text: DOI EuDML


[1] Brauer, R.: On the zeta-functions of algebraic number fields. II. Am. J. Math.72, 739-746 (1950) · Zbl 0038.17602 · doi:10.2307/2372290
[2] Goldstein, L. J.: On the class numbers of cyclotomic fields. J. Number Theory5, 58-63 (1973) · Zbl 0253.12013 · doi:10.1016/0022-314X(73)90058-9
[3] Hasse, H.: Über die Klassenzahl abelscher Zahlkörper. Berlin: Akademie-Verlag 1952 · Zbl 0063.01966
[4] Iwasawa, K.: Lectures onp-adicL-functions. Princeton, Princeton Univ. Press 1972
[5] Iwasawa, K.: On ? l -extensions of algebraic number fields, Ann. Math.98, 246-326 (1973) · Zbl 0285.12008 · doi:10.2307/1970784
[6] Iwasawa, K.: On the ?-invariants of ? l -extensions. In: Number Theory, Algebraic Geometry and Commutative Algebra. In honor of Y. Akizuki, Kinokuniya, Tokyo, 1-11 1973
[7] Lang, S.: Algebraic number theory. Reading, Mass.: Addison-Wesley 1970 · Zbl 0211.38404
[8] Yokoi, H.: On the class number of a relatively cyclic number field. Nagoya Math. J.29, 31-44 (1967) · Zbl 0166.05803
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.