×

Cubature formulas of degree eleven for symmetric planar regions. (English) Zbl 0302.65018


MSC:

65D30 Numerical integration
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Rabinowitz, R.; Richter, N., Perfectly symmetric two-dimensional integration formulas with minimal number of points, Math. comp., 23, 765-779, (1969) · Zbl 0208.18702
[2] Mysovskikh, I.P., On the construction of cubature formulas with the smallest number of nodes, Soviet math. dokl., 9, 277-280, (1968), MR 36 # 7328 · Zbl 0176.14404
[3] Franke, R., Minimal point cubatures of precision seven for symmetric regions, SIAM J. numer. anal., 10, 849-882, (1971) · Zbl 0235.65020
[4] Haber, S., Numerical evaluation of multiple integrals, SIAM review, 12, 481-526, (1970), MR 44 #2342 · Zbl 0206.46905
[5] Stroud, A.H., Approximate calculation of multiple integrals, (1971), Prentice-Hall Englewood Cliffs · Zbl 0379.65013
[6] Stroud, A.H., Integration formulas and orthogonal polynomials for two variables, SIAM J. numer. anal., 6, 222-229, (1969), MR 41 #6400 · Zbl 0177.20304
[7] Albrecht, J., Formeln zur numerischen integration über kreisbereiche, Z. angew. math. mech., 40, 514-517, (1960), MR 22 # 11514 · Zbl 0097.33204
[8] Mysovskikh, I.P., On the construction of cubature formulas for the simplest regions, Z. vycisl. mat. i. mat. fiz., 4, 3-14, (1964)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.