×

zbMATH — the first resource for mathematics

Multiply superharmonic functions. (English) Zbl 0303.31006

MSC:
31B05 Harmonic, subharmonic, superharmonic functions in higher dimensions
31B25 Boundary behavior of harmonic functions in higher dimensions
PDF BibTeX XML Cite
Full Text: DOI Numdam EuDML
References:
[1] P. R. AHERN and W. RUDIN, Factorizations of bounded holomorphic functions, Duke Math. J., 39 (1972), 767-777. · Zbl 0265.32004
[2] M. BRELOT, Lectures on potential theory, Tata Institute of Fundamental Research, Bombay, 1960. · Zbl 0098.06903
[3] M. BRELOT and J.-L. DOOB, Limites angulaires et limites fines, Ann. Inst. Fourier, XIII, fasc. 2 (1963), 395-415. · Zbl 0132.33902
[4] R. CAIROLI, Une représentation intégrale pour fonction séparément excessive, Ann. Inst. Fourier, 18 (1968), 317-338. · Zbl 0165.52601
[5] A. DRINKWATER, Integral representation for multiply superharmonic functions. Math. Annalen (to appear). · Zbl 0286.31010
[6] K. GOWRISANKARAN, Extreme harmonic functions and boundary value problems, Ann. Inst. Fourier, XIII, fasc. 2 (1963), 307-356. · Zbl 0134.09503
[7] K. GOWRISANKARAN, Iterated fine limits and non-tangential limits, Trans. Amer. Math. Soc., 173 (1972), 71-92. · Zbl 0226.31013
[8] K. GOWRISANKARAN, Multiply harmonic functions, Nagoya Math. J., 28 (1966), 27-48. · Zbl 0148.10501
[9] K. GOWRISANKARAN, On a problem of Doob concerning multiply superharmonic functions, Nagoya Math. J., 39 (1970), 127-132. · Zbl 0201.43303
[10] K. GOWRISANKARAN, Integral representation for a class of multiply superharmonic functions, Ann. Inst. Fourier, XXIII, fasc. 4 (1973), 105-143. · Zbl 0259.31004
[11] I. REAY, (to appear).
[12] A. ZYGMUND, Trigonometrical series, vol. 2, 2nd ed. Cambridge University Press, New York, 1959. · Zbl 0085.05601
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.