On definitions of superharmonic functions. (English) Zbl 0303.31008


31B05 Harmonic, subharmonic, superharmonic functions in higher dimensions
35J15 Second-order elliptic equations
Full Text: DOI Numdam EuDML


[1] M. BRELOT, Éléments de la théorie classique du potentiel, Centre Doc. Univ. Paris, 3e éd. 1956.
[2] S. ITÔ, Fundamental solutions of parabolic differential equations and boundary value problems, Japan. J. Math., 27 (1957), 55-102. · Zbl 0092.31101
[3] F. RIESZ, Sur LES fonctions subharmoniques et leur rapport à la théorie du potentiel, Acta Math., 48 (1926), 329-343 ; 54 (1930), 321-360. · JFM 52.0497.05
[4] L. SCHWARTZ, Théorie des distributions, Hermann, Paris, 1966.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.