Hardt, Robert M. Topological properties of subanalytic sets. (English) Zbl 0303.32008 Trans. Am. Math. Soc. 211, 57-70 (1975). Page: −5 −4 −3 −2 −1 ±0 +1 +2 +3 +4 +5 Show Scanned Page Cited in 1 ReviewCited in 37 Documents MSC: 32B20 Semi-analytic sets, subanalytic sets, and generalizations 32C30 Integration on analytic sets and spaces, currents 55N35 Other homology theories in algebraic topology 55N45 Products and intersections in homology and cohomology 57N60 Cellularity in topological manifolds × Cite Format Result Cite Review PDF Full Text: DOI References: [1] A. Dold, Lectures on algebraic topology, Springer-Verlag, Berlin and New York, 1973. · Zbl 0234.55001 [2] Herbert Federer, Geometric measure theory, Die Grundlehren der mathematischen Wissenschaften, Band 153, Springer-Verlag New York Inc., New York, 1969. · Zbl 0176.00801 [3] Burghart Giesecke, Simpliziale Zerlegung abzählbarer analytischer Räume, Math. Z. 83 (1964), 177 – 213 (German). · Zbl 0123.39602 · doi:10.1007/BF01111199 [4] Robert M. Hardt, Slicing and intersection theory for chains associated with real analytic varieties, Acta Math. 129 (1972), 75 – 136. · Zbl 0234.32005 · doi:10.1007/BF02392214 [5] -, Slicing and intersection theory for chains modulo v associated with real analytic varieties, Trans. Amer. Math. Soc. 185 (1973), 327-340. · Zbl 0267.28010 [6] Robert M. Hardt, Homology theory for real analytic and semianalytic sets, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 2 (1975), no. 1, 107 – 148. · Zbl 0309.32004 [7] Robert M. Hardt, Stratification of real analytic mappings and images, Invent. Math. 28 (1975), 193 – 208. · Zbl 0298.32003 · doi:10.1007/BF01436073 [8] Robert M. Hardt, Sullivan’s local Euler characteristic theorem, Manuscripta Math. 12 (1974), 87 – 92. · Zbl 0281.32005 · doi:10.1007/BF01166236 [9] Heisuke Hironaka, Subanalytic sets, Number theory, algebraic geometry and commutative algebra, in honor of Yasuo Akizuki, Kinokuniya, Tokyo, 1973, pp. 453 – 493. · Zbl 0297.32008 [10] S. Lojasiewicz, Triangulation of semi-analytic sets, Ann. Scuola Norm. Sup. Pisa (3) 18 (1964), 449 – 474. · Zbl 0128.17101 [11] -, Ensembles semianalytiques, Cours Faculté des Sciences d’Orsay, Inst. Hautes Études Sci. Bures-sur-Yvette, 1965. [12] William F. Pohl, Some integral formulas for space curves and their generalization, Amer. J. Math. 90 (1968), 1321 – 1345. · Zbl 0181.50303 · doi:10.2307/2373302 [13] Robert M. Hardt, Triangulation of subanalytic sets and proper light subanalytic maps, Invent. Math. 38 (1976/77), no. 3, 207 – 217. · Zbl 0331.32006 · doi:10.1007/BF01403128 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.