×

On proper holomorphic mappings of strictly pseudoconvex domains. (English) Zbl 0303.32016


MSC:

32T99 Pseudoconvex domains
31C10 Pluriharmonic and plurisubharmonic functions
35N15 \(\overline\partial\)-Neumann problems and formal complexes in context of PDEs
32U05 Plurisubharmonic functions and generalizations
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] W. Rudin, Function Theory in Polydiscs, W. A. Benjamin, Inc., New York-Amsterdam (1969). · Zbl 0177.34101
[2] D. A. Eisenman, ?Proper holomorphic self-maps of the unit ball,? Math. Ann.,190, No. 4, 298-305 (1971). · Zbl 0207.08202
[3] G. A. Margulis, Correspondence of Boundaries during Biholomorphic Mapping of Multidimensional Domains. Theses of Reports of All-Union Conference on the Theory of Complex Variable Functions [in Russian], FTINT, Khar’kov (1971).
[4] B. S. Mityagin and G. M. Khenkin, ?Linear problems of a complex analysis,? Uspekhi Matem. Nauk,26, No. 4, 93-152 (1971). · Zbl 0243.32005
[5] B. N. Khimchenko, ?The behavior of a superharmonic function near the boundary of a domain of the type A(?),? Differents. Uravneniya,1, No. 10, 1845-1853 (1969). · Zbl 0183.39103
[6] M. V. Keldysh and M. A. Lavrent’ev, ?The uniqueness of Neiman’s problem,? Dokl. Akad. Nauk SSSR,16, No. 1, 151-152 (1937).
[7] R. Hanning and Ch. Rossi, Analytical Functions of Many Complex Variables [Russian translation], Mir, Moscow (1969).
[8] H. Grauert and R. Remmert, Plurisubharmonische Funktionen in Komplexen Räumen, Meth. Z.,65, 175-194 (1956). · Zbl 0070.30403
[9] B. A. Fuks, Special Chapters of the Theory of Analytical Functions of Many Complex Variables [in Russian], Fizmatgiz, Moscow (1963).
[10] L. Khermander, ?Evaluation in L2 and existence theorems for operator \(\bar \partial \) ,? Translations of Foreign Articles; Matematika,10, No. 2, 59-116 (1966).
[11] G. M. Khenkin, ?Integral presentation of functions in strictly pseudoconvex domains and the application to the \(\bar \partial \) problem,? Matem. Sbornik,82, No. 2, 300-308 (1970). · Zbl 0206.09101
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.