Wavrik, John J. A theorem on solutions of analytic equations with applications to deformations of complex structures. (English) Zbl 0303.32018 Math. Ann. 216, 127-142 (1975). Page: −5 −4 −3 −2 −1 ±0 +1 +2 +3 +4 +5 Show Scanned Page Cited in 2 ReviewsCited in 24 Documents MSC: 32G05 Deformations of complex structures 32B99 Local analytic geometry 13J05 Power series rings PDF BibTeX XML Cite \textit{J. J. Wavrik}, Math. Ann. 216, 127--142 (1975; Zbl 0303.32018) Full Text: DOI EuDML References: [1] Artin, M.: On the solutions of analytic equations. Inventiones math.5, 277-291 (1968) · Zbl 0172.05301 [2] Artin, M.: Algebraic approximation of structures over complete local rings. Publ. Math. I.H.E.S.36, 23-58 (1969) · Zbl 0181.48802 [3] Griffiths, P.A.: The extension problem for compact submanifolds of complex manifolds. I. Proc. Conf. Complex Analysis, Minneapolis, 1964. New York: Springer 1965 [4] Grothendieck, A.: Elements de geometrie algebrique. Publ. Math. I.H.E.S., 1960-1970 · Zbl 0118.36206 [5] Matsumura, H.: Formal power series rings over polynomial rings. I. Number theory, algebraic geometry, and commutative algebra. In honor of Y. Akizuki, Tokyo, 1973 · Zbl 0271.13015 [6] Tougeron, J.C.: Ideaux de fonctions differentiables. New York: Springer 1972 · Zbl 0251.58001 [7] Wavrik, J.J.: Obstructions to the existence of a space of moduli. Global Analysis, papers in honor of K. Kodaira, Princeton U. Press, 1969 · Zbl 0191.38003 [8] Wavrik, J.J.: A theorem of completeness for families of compact analytic spaces. Trans. A.M.S.163, 147-155 (1972) · Zbl 0205.38803 [9] Wavrik, J.J.: Deforming cohomology classes. Trans. A.M.S.181, 341-350 (1973) · Zbl 0238.32011 [10] Wavrik, J.J.: First order completeness theorems. Math. Ann.206, 249-264 (1973) · Zbl 0258.32008 [11] Zariski, O., Samuel, P.: Commutative algebra. New York: Van Nostrand 1958 · Zbl 0081.26501 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.