×

An existence proof for the Hartree-Fock time-dependent problem with bounded two-body interaction. (English) Zbl 0303.34046


MSC:

34G99 Differential equations in abstract spaces
Full Text: DOI

References:

[1] Dirac, P. A. M.: Proc. Cambridge Phil. Soc.26, 376 (1930) · JFM 56.0751.04 · doi:10.1017/S0305004100016108
[2] Bogoliubov, N. N.: Uspekhi Fiz. Nauk.67, 549 (1959)
[3] Valatin, J. G.: Phys. Rev.122, 1012 (1961); Lectures in theoretical physics, Vol. 6, p. 292. Boulder: W. E. Brittin 1963 · Zbl 0097.43603 · doi:10.1103/PhysRev.122.1012
[4] Di Castro, C., Young, W.: Nuovo Cimento62B, 273 (1969)
[5] Thouless, D. J.: The quantum mechanics of many-body systems, second edition. New York, London: Acad. Press 1972
[6] Da Prato, G.: J. Math. Pures Appl.49, 289 (1970)
[7] Da Prato, G.: Istituto Nazionale di Alta Matematica, Symposia Mathematica7, 233 (1971)
[8] Da Prato, G.: Quelques résultats d’existence, unicité et régularité pour un problème de la théorie du contrôle, J. Math. Pures Appl., to appear (1973)
[9] Fano, G.: Séminaires de l’Institut de Physique Théorique, C.N.R.S., Chemin J. Aiguier, Marseille (France), p. 194 III/1968
[10] Powers, R. T.: Representations of the C.A.R. Princeton Thesis, 1967 · Zbl 0157.20605
[11] Iannelli, M.: Boll. U.M.I.6, 1015 (1970)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.