×

zbMATH — the first resource for mathematics

Scindement d’une équivalence d’homotopie en dimension 3. (French) Zbl 0303.57003

MSC:
57N10 Topology of general \(3\)-manifolds (MSC2010)
55P10 Homotopy equivalences in algebraic topology
57N35 Embeddings and immersions in topological manifolds
57N65 Algebraic topology of manifolds
57R60 Homotopy spheres, Poincaré conjecture
PDF BibTeX XML Cite
Full Text: DOI Numdam EuDML
References:
[1] S. CAPPELL , A splitting theorem for manifolds and surgery groups (Bull. Amer. Math. Soc., vol. 77, 1971 , p. 281-286). Article | MR 44 #2234 | Zbl 0215.52601 · Zbl 0215.52601
[2] S. CAPPELL , Splitting obstructions for Hermitian forms and manifolds with Z2 \subset \pi 1 , (Bull. Amer. Math. Soc., vol. 79, 1973 , p. 909-913). Article | MR 49 #3987 | Zbl 0272.57016 · Zbl 0272.57016
[3] J. CERF , Sur les difféomorphismes de la sphère de dimension 3 (\Gamma 4 = 0) (Lect. Notes in Math., n^\circ 53, Springer, 1968 ). MR 37 #4824 | Zbl 0164.24502 · Zbl 0164.24502
[4] I. GRUSHKO , On the bases of a free product of groups (Mat. Sbornik, vol. 8, 1940 , p. 169-182). Zbl 0023.30102 | JFM 66.0066.02 · Zbl 0023.30102
[5] W. HEIL , On P\(^{2}\)-irreducible 3-manifolds (Bull. Amer. Math. Soc., vol. 75, 1969 , p. 772-775). Article | MR 40 #4958 | Zbl 0176.21401 · Zbl 0176.21401
[6] H. HENDRIKS , Une obstruction pour scinder une équivalence d’homotopie en dimension 3 (à paraître). · Zbl 0335.57005
[7] H. HENDRIKS , Applications de la théorie d’obstruction en dimension 3 (C. R. Acad. Sc., Paris, t. 276, série A, 1973 , p. 1101-1104). MR 47 #7744 | Zbl 0257.57001 · Zbl 0257.57001
[8] H. HENDRIKS et F. LAUDENBACH , Scindement d’une équivalence d’homotopie en dimension 3 (C. R. Acad. Sc., Paris, t. 276, série A, 1973 , p. 1275-1278). MR 47 #7745 | Zbl 0255.57004 · Zbl 0255.57004
[9] P. J. HILTON , On the homotopy groups of the union of spheres (J. London Math. Soc., vol., 30, 1955 , p. 154-171). MR 16,847d | Zbl 0064.17301 · Zbl 0064.17301
[10] M. HIRSCH et S. SMALE , On involutions of the 3-sphere (Amer. J. Math., vol. 81, 1959 , p. 893-900). MR 22 #1909 | Zbl 0090.39204 · Zbl 0090.39204
[11] KNESER , Geschlossene Flächen in dreidimensionalen Mannigfaltigkeiten (J. B. Deutsch. Math. Verein, vol. 38, 1929 , p. 248-260). Article | JFM 55.0311.03 · JFM 55.0311.03
[12] F. LAUDENBACH , Sur les 2-sphères d’une variété de dimension 3 (Ann. of Math., vol. 97, 1973 , p. 57-81). MR 47 #2606 | Zbl 0246.57003 · Zbl 0246.57003
[13] F. LAUDENBACH , Topologie de la dimension 3: homotopie et isotopie , (Astérisque, vol. 12, 1974 ). MR 50 #8527 | Zbl 0293.57004 · Zbl 0293.57004
[14] G. LIVESAY , Fixed point free involutions on the 3-sphere (Ann. of Math., vol. 72, 1960 , p. 603-611). MR 22 #7131 | Zbl 0096.17302 · Zbl 0096.17302
[15] C. PAPAKYRIAKOPOULOS , On Dehn’s lemma and the asphericity of knots (Ann. of Math., vol. 66, 1957 , p. 1-26). MR 19,761a | Zbl 0078.16402 · Zbl 0078.16402
[16] E. SPECKER , Die erste Cohomologiegruppe von Ueberlagerungen und Homotopie-Eigenschaften dreidimensionaler Mannigfaltigkeiten (Comment. Math. Helv., vol. 23, 1949 , p. 303-333). MR 11,451a | Zbl 0036.12803 · Zbl 0036.12803
[17] J. STALLINGS , Group theory and three dimensional manifolds , Yale University Press, 1971 . Zbl 0241.57001 · Zbl 0241.57001
[18] G. A. SWARUP , On embedded spheres in 3-manifolds (Math. Ann., vol. 203, 1973 , p. 89-102). MR 48 #7252 | Zbl 0241.55017 · Zbl 0241.55017
[19] G. A. SWARUP , On a theorem of C. B. Thomas (J. London Math. Soc., vol. 8, 1974 , p. 13-21). MR 49 #6225 | Zbl 0281.57003 · Zbl 0281.57003
[20] C. B. THOMAS , The oriented homotopy type of compact 3 manifolds (Proc. London Math. Soc., vol. 19, 1969 , p. 31-44). MR 40 #2088 | Zbl 0167.21502 · Zbl 0167.21502
[21] F. WALDHAUSEN , On irreducible 3-manifolds which are sufficiently large (Ann. of Math., vol. 87, 1968 , p. 56-88). MR 36 #7146 | Zbl 0157.30603 · Zbl 0157.30603
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.