×

On projection methods for linear equations of the second kind. (English) Zbl 0303.65051


MSC:

65J05 General theory of numerical analysis in abstract spaces
49M15 Newton-type methods
47B10 Linear operators belonging to operator ideals (nuclear, \(p\)-summing, in the Schatten-von Neumann classes, etc.)
47A50 Equations and inequalities involving linear operators, with vector unknowns
65R20 Numerical methods for integral equations
65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Birman, M.S; Solomyak, M.Z, Kusočno-polynomial’nye priblizhenia funktsii klassov Wpα, Mat. sb., 73, 115, 331-335, (1967)
[2] Fučik, S; John, O; Nečas, J, On the existence of Schauder bases in Sobolev spaces, comment. math. univ. carolinae (CMUC), 13, 163-175, (1972) · Zbl 0231.46064
[3] Garling, D.J.H; Gordon, Y, Relations between some constants associated with finite dimensional Banach spaces, Israel J. math., 9, 346-361, (1971) · Zbl 0212.14203
[4] Gramsch, B, Meromorphie in der theorie der Fredholm-operatoren mit anwendungen auf elliptische differential-operatoren, Math. ann., 188, 97-112, (1970) · Zbl 0188.19502
[5] el Kolli, A, nmeépaisseur dans LES espaces de Sobolev, C. R. acad. sci. Paris, 272, 537-539, (1971) · Zbl 0225.41003
[6] Lindenstrauss, J; Rosenthal, H.P, The \(L\)_{p} spaces, Israel J. math., 7, 325-349, (1969) · Zbl 0205.12602
[7] Pietsch, A, Nukleare lokalkonvexe Räume, (1965), Akademie Verlag Berlin · Zbl 0152.32302
[8] Pietsch, A, Absolut p-summierende abbildungen in normierten Räumen, Studia math., 38, 333-353, (1967) · Zbl 0156.37903
[9] Schock, E; Schock, E, Über die konvergenzgeschwindigkeit projektiver verfahren, II, Math. Z., Math. Z., 127, 191-198, (1972) · Zbl 0226.47009
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.