×

zbMATH — the first resource for mathematics

Sur certaines fibrations d’espaces homogenes riemanniens. (French) Zbl 0304.53036

MSC:
53C30 Differential geometry of homogeneous manifolds
PDF BibTeX XML Cite
Full Text: Numdam EuDML
References:
[1] Berard Bergery L. : Submersions riemanniennes. Exposés au séminaire Berger (1973-74) Université Paris 7
[2] Berger M. : Les variétés riemanniennes homogènes normales simplement connexes à courbure strictement positive . Ann. Scuola Norm. Sup. Pisa (3) 15 (1961) 179-246 · Zbl 0101.14201
[3] Boothby W.M. and Wang H.C. : On contact manifolds . Ann. of Math. 68 (1958) 721-734 · Zbl 0084.39204
[4] Helgason S. : Differential geometry and symmetric spaces . Academic Press, New York 1962 · Zbl 0111.18101
[5] Kobayashi K. and Nomizu K. : Foundations of differential geometry . Interscience, New York I (1963) II (1969) · Zbl 0119.37502
[6] O’Neill B. : The fundamental equations of a submersion . Michigan Math. J. 13 (1966) 459-469 · Zbl 0145.18602
[7] Serre J.P. : Représentations linéaires et espaces homogènes kählériens des groupes de Lie compacts . Séminaire Bourbaki (mai 1954) exposé 100 · Zbl 0121.16203
[8] Wallach N.R. : Homogeneous positively pinched riemannian manifolds . Bull. A.M.S. 76 (1970) 783-786 · Zbl 0197.48003
[9] Wallach N.R. : Compact homogeneous riemannian manifolds with strictly positive curvature . Ann. of Math. 96 (1972) 277-295 · Zbl 0261.53033
[10] Wallach N.R. : An infinite family of distinct 7-manifolds admitting positively curved Riemannian structures (preprint) · Zbl 0362.53033
[11] Weinstein A. : Unflat bundles (preliminary report)
[12] Wolf J.A. : Complex homogeneous contact manifolds and quaternionic symmetric spaces . J. of Math. and Mech. 14 (1965) 1033-1047 · Zbl 0141.38202
[13] Serre J.P. : Algèbres de Lie semi-simple complexes . Benjamin, New York (1966) · Zbl 0144.02105
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.