×

zbMATH — the first resource for mathematics

Development systems with locally catenative formulas. (English) Zbl 0304.68076

MSC:
68Q45 Formal languages and automata
68N01 General topics in the theory of software
92B05 General biology and biomathematics
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Baker, R., Herman, G. T.: Simulation of organisms using a developmental model, parts I and II. Intematl. J. Biomed. Computing 3, 201-215, 251-267 (1972) · doi:10.1016/0020-7101(72)90014-1
[2] Dalen, D. van: A note on some systems of Lindenmayer. Math. Systems Theory 5, 128-140 (1971) · Zbl 0218.02031 · doi:10.1007/BF01702868
[3] Doucet, P. G.: On the membership question in some Lindenmayer systems. Indagationes Mathematicae 34, 45-52 (1972) · Zbl 0242.68051
[4] Feliciangeli, H., Herman, G. T.: Algorithms for producing grammars from sample derivations: A common problem of formal language theory and developmental biology. J. Computer and System Sciences 7, 97-118 (1973) · Zbl 0252.68041 · doi:10.1016/S0022-0000(73)80051-0
[5] Herman, G. T.: The computing ability of a developmental model for filamentous organisms. J. Theoretical Biology 25, 421-435 (1969) · doi:10.1016/S0022-5193(69)80030-5
[6] Herman, G. T.: The role of environment in developmental models. J. Theoretical Biology 29, 329-341 (1970) · doi:10.1016/0022-5193(70)90102-5
[7] Herman, G. T.: Closure properties of some families of languages associated with biological systems. Information and Control (in press) · Zbl 0275.68018
[8] Herman, G. T.: Models for cellular interactions in development without polarity of individual cells, parts I and II. Internatl. J. System Sciences 2, 271-289 (1971); 3, 145-175 (1972) · Zbl 0224.92007 · doi:10.1080/00207727108920195
[9] Iterson, Jr., G. van: Mathematische und mikroskopisch-anatomische Studien über Blattstellungen. Jena: G. Fischer 1907 · JFM 38.0984.07
[10] Hopcroft, J. E., Ullman, J. D.: Formal languages and their relation to automata. Reading (Mass.): Addison-Wesley 1969 · Zbl 0196.01701
[11] Leeuwen, J. van: Deterministic OL languages. In: G. Rozenberg ?Seminar on Automata Theory and Math. Ling., Autumn 1970, Abstract No. 2?, 1970
[12] Lindenmayer, A.: Mathematical models for cellular interactions in development, parts I and II. J. Theoretical Biology 18, 280-299, 300-315 (1968) · doi:10.1016/0022-5193(68)90079-9
[13] Lindenmayer, A.: Developmental systems without cellular interactions, their languages and grammars. J. Theoretical Biology 30, 455-484 (1971) · doi:10.1016/0022-5193(71)90002-6
[14] Lindenmayer, A.: Polarity, symmetry, and development (manuscript)
[15] Rozenberg, G.: Some results on OL languages, parts I and II. Elektr. Rekencent. Utrecht, Publ. No. 93, 95, 1970
[16] Rozenberg, G.: On some properties of propagating DOL systems, part I. Elektr. Rekencent. Utrecht, Publ. No. 106, 1971
[17] Rozenberg, G.: On OL systems with restricted use of productions. J. Computer and Systems Science (in press)
[18] Rozenberg, G., Doucet, P. G.: On OL languages. Information and Control 19, 302-318 (1971) · Zbl 0242.68052 · doi:10.1016/S0019-9958(71)90164-1
[19] Mitchison, G. J., Wilcox, M.: Rule governing cell division in Anabaena. Nature 239, 110-111 (1972) · doi:10.1038/239110a0
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.