×

Incollamenti di ideali primi e gruppi di Picard. (Italian) Zbl 0305.13005


MSC:

13B99 Commutative ring extensions and related topics
13F20 Polynomial rings and ideals; rings of integer-valued polynomials
13E05 Commutative Noetherian rings and modules
13D15 Grothendieck groups, \(K\)-theory and commutative rings
PDF BibTeX XML Cite
Full Text: Numdam EuDML

References:

[1] Bass H. : Algebraic k-theory , Benjamin New-York , 1968 . MR 249491 | Zbl 0174.30302 · Zbl 0174.30302
[2] Bass H. - Murthy P. : Grothendieck groups and Picard groups of abelian graup rings , Ann. of Math , Vol. 86 , n. 1, July, 1967 . Zbl 0157.08202 · Zbl 0157.08202
[3] Bourbaki N. : Algebre Commutative, ch . 1 et 2 Hermann , Paris , 1961 . · Zbl 0108.04002
[4] Bourbaki N. : Algebre Commutative, ch 5 et 6 Hermann , Paris , 1964 . MR 194450 · Zbl 0205.34302
[5] Endo S. : Projective modules over polynomial rings , J. Math. Soc. Japan , Vol. 15 , n. 13, 1963 . Article | MR 155875 | Zbl 0119.03504 · Zbl 0119.03504
[6] Grothendiek A. : Élements de géometric algebrique, IV (Seconde Partie) I.H.E.S. , Paris , 1965 .
[7] Pedrini C. : Sul gruppo di Picard di certe estensioni di anelli di gruppo 1-dimensionali , Rend. di Mat. ( 1 ) Vol. 4 , Serie VI , 1971 . MR 292961 | Zbl 0219.14001 · Zbl 0219.14001
[8] Pedrini C. : Sul gruppo di Picard di certe estensioni di anelli di gruppo 1-dimensionali, II , Rend. di Mat ( 6 ), 5 , 1 ( 1972 ). MR 337937 | Zbl 0243.14001 · Zbl 0243.14001
[9] Pedrini C. : Sulla normalità e il gruppo di Picard di certi anelli . Le Matematiche , Vol. XXV , fasc. 1 , 1970 . MR 304373 | Zbl 0219.14002 · Zbl 0219.14002
[10] Traverso C. : Seminormality and Picard groups , Ann. Sc. Norm. Sup. Pisa , Vol. XXIV , Fasc. IV , 1970 . Numdam | MR 277542 | Zbl 0205.50501 · Zbl 0205.50501
[11] Zariski - Samuel : Commutative Algebra , Vol. I , Van Nostrand , 1958 . MR 90581 | Zbl 0081.26501 · Zbl 0081.26501
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.