zbMATH — the first resource for mathematics

Universal approximation by systems of hill functions. (English) Zbl 0305.41011
41A30 Approximation by other special function classes
Full Text: EuDML
[1] I. Babuška: Approximation by hill functions. Comment. Math. Univ. Carolinae 11 (1970), 787-811. · Zbl 0215.46404 · eudml:16399
[2] I. Babuška: The rate of convergence for the finite element method. SIAM J. Numer. Anal. 8 (1971), 304-315. · Zbl 0232.65080 · doi:10.1137/0708031
[3] I. Babuška J. Segethová K. Segeth: Numerical experiments with the finite element method I. Tech. Note BN-669, Institute for Fluid Dynamics and Applied Mathematics, University of Maryland, August 1970.
[4] G. Fix G. Strang: Fourier analysis of the finite element method in Ritz-Galerkin theory. Studies in Appl. Math. 48 (1969), 265-273. · Zbl 0179.22501
[5] J. L. Lions E. Magenes: Problèmes aux limites non homogènes et applications. Vol. 1. Dunod, Paris 1968. · Zbl 0212.43801
[6] J. Nečas: Les méthodes directes en théorie des équations elliptiques. Academia, Prague 1967. · Zbl 1225.35003
[7] K. Segeth: Universal approximation by hill functions. Czechoslovak Math. J. 22 (1972), 612-640. · Zbl 0247.41011 · eudml:12688
[8] K. Segeth: A remark on a class of universal hill functions. Acta Univ. Carolinae-Math. et Phys. 15 (1974), No. 1 - 2, to appear. · Zbl 0314.41008
[9] G. Strang G. J. Fix: An analysis of the finite element method. Prentice-Hall, Englewood Cliffs, N. J. 1973. · Zbl 0278.65116
[10] K. Yosida: Functional analysis. Academic Press, New York-London 1965. · Zbl 0126.11504
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.