×

zbMATH — the first resource for mathematics

Invariant means for the bounded measurable functions on a non-discrete locally compact group. (English) Zbl 0305.43002

MSC:
43A07 Means on groups, semigroups, etc.; amenable groups
PDF BibTeX XML Cite
Full Text: DOI EuDML
References:
[1] Chou, C.: On the size of the left invariant means on a semi-group. Proc. Amer. Math. Soc.23, 199-205 (1969) · Zbl 0188.19006
[2] Chou, C.: On topological invariant means on a locally compact group. Trans. Amer. Math. Soc.151, 443-456 1970) · Zbl 0202.14001 · doi:10.1090/S0002-9947-1970-0269780-8
[3] Chou, C.: The exact cardinality of the set of invariant means on a group (to appear) · Zbl 0319.43006
[4] Granirer, E.: On amenable semigroups with a finite-dimensional set of invariant means I. Illinois J. Math.7, 32-48 (1963) · Zbl 0113.09801
[5] Granirer, E.: Criteria for compactness and for discreteness of locally amenable groups. Proc. Amer. Math. Soc.40, 615-624 (1973) · Zbl 0274.22009 · doi:10.1090/S0002-9939-1973-0340962-8
[6] Greenleaf, F.P.: Invariant means on topological groups and their applications. Van Nostrand Math. Studies 16. New York: Van Nostrand 1969 · Zbl 0174.19001
[7] Kuratowski, K.: Applications of the Baire-category method to the problem of independent sets. Fundamenta Math.81, 65-72 (1973) · Zbl 0311.54036
[8] Mycielski, J.: Independent sets in topological algebras. Fundamenta Math.55, 139-147 (1964) · Zbl 0124.01301
[9] Mycielski, J.: Almost every function is independent. Fundamenta Math.81, 43-48 (1973) · Zbl 0311.54018
[10] Rosenblatt, J.: Invariant means and invariant ideals inL ? (G) for a locally compact groupG. To appear in J. Functional Analysis
[11] Rudin, W.: Invariant means onL ?. Studia Math.44, 219-227 (1972) · Zbl 0238.43002
[12] Rudin, W.: Homomorphisms and translations inL ?(G). Advances im Math.16, 72-90 (1975) · Zbl 0297.22009 · doi:10.1016/0001-8708(75)90101-2
[13] Wells, B.: Homomorphisms and translates of bounded functions. Duke Math.41, 35-39 (1974) · Zbl 0281.28004 · doi:10.1215/S0012-7094-74-04105-2
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.