×

The Fourier transform on semisimple Lie groups of real rank one. (English) Zbl 0305.43007


MSC:

43A30 Fourier and Fourier-Stieltjes transforms on nonabelian groups and on semigroups, etc.
43A40 Character groups and dual objects
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Gelbart, S., Fourier analysis on matrix space.Mem. Amer. Math. Soc., No. 108 (1971). · Zbl 0227.43016
[2] Gel’fand, I. M., Graev, M. I. &Pjateckii-┼ťapiro, I. I.,Generalized functions. Vol. 6: Theory of representations and automorphic functions, ”Nauka”, Moscow, 1966; English transl., Saunders, Philadelphia, 1969.
[3] Gradshteyn &Ryzhik,Tables of integrals, series and products. Academic Press, New York, 1965.
[4] Harish-Chandra, a) A formula for semisimple Lie groups.Amer. J. Math., 79 (1957), 733–760. · Zbl 0080.10201
[5] –, b) Harmonic analysis on semisimple Lie groups. Some recent advances in the basic sciences, Belfer Graduate School of Science, Yeshiva University, New York, 1966, pp. 35–40.
[6] –, c) Some results on an invariant integral on a semisimple Lie algebra.Annals of Math., (2) 80 (1964), 551–593. · Zbl 0152.13401
[7] –, d) Invariant eigendistributions on a semisimple Lie group.Trans. Amer. Math. Soc., 119 (1965), 457–508. · Zbl 0199.46402
[8] –, e) Discrete series for semisimple Lie groups. I.Acta Math., 113 (1965), 241–318. · Zbl 0152.13402
[9] –, f) Two theorems on semisimple Lie groups.Annals of Math., (2) 83 (1966), 1–111. · Zbl 0199.46403
[10] Hobson, E. W.,The theory of functions of a real variable. Vol. 2. Dover New York, 1926. · JFM 52.0237.02
[11] Okamoto, K., On the Plancherel formula for some types of simple Lie groups.Osaka J. Math., 2 (1965), 247–282. · Zbl 0132.36004
[12] Sally, P. J., Jr. & Shalika, J. A., The Fourier transform onSL 2 over a non-archimedean local field. To appear.
[13] Sally, P. J., Jr. &Warner, G., a) Fourier inversion for semisimple Lie groups of real rank one.Bull. Amer. Math. Soc., 78 (1972), 251–254. · Zbl 0249.22008
[14] –, b)The Fourier transform of invariant distributions, Maryland Conference on Harmonic Analysis. Springer Lecture Notes in Mathematics 266, Springer, Berlin, 1972, 297–320.
[15] Sugiura, M., Conjugate classes of Cartan subalgebras in real semisimple Lie algebras.J. Math. Soc. Japan, 11 (1958), 374–434. · Zbl 0204.04201
[16] Titchmarsh, E. C.,The theory of functions, Oxford, London, 1939. · Zbl 0022.14602
[17] Warner, G.,Harmonic analysis on semisimple Lie groups. 2 Vol, Springer, Berlin, 1972. · Zbl 0265.22020
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.