zbMATH — the first resource for mathematics

Generalized Procrustes analysis. (English) Zbl 0305.62038

62H30 Classification and discrimination; cluster analysis (statistical aspects)
91E99 Mathematical psychology
62P15 Applications of statistics to psychology
Full Text: DOI
[1] Banfield, C. F. & Harries, J. M. A technique for comparing judges’ performance in sensory tests.J. Food Technology (In press).
[2] Carroll, J. D. & Chang, J. J. Analysis of individual differences in multidimensional scaling via an N-way generalization of ”Eckart-Young” decomposition.Psychometrika, 1970,35, 283–320. · Zbl 0202.19101 · doi:10.1007/BF02310791
[3] Eckart, V. & Young, G. The approximation of one matrix by another of lower rank.Psychometrika, 1935,1, 211–218. · JFM 62.1075.02 · doi:10.1007/BF02288367
[4] Gower, J. C. Statistical methods of comparing different multivariate analyses of the same data. InMathematics in the Archaeological & Historical Sciences. Hodson, F. R., Kendall, D. G., & Tautu, P. Edinburgh: Edinburgh Univ. Press, 1971, 138–149.
[5] Gower, J. C. The determinant of an orthogonal matrix. Algorithm AS 82.Applied Statistics, (In press)24.
[6] Gruvaeus, G. T. A general approach to Procrustes pattern rotation.Psychometrika, 1970,35, 493–505. · doi:10.1007/BF02291822
[7] Kristof, W. & Wingersky, B. Generalization of the orthogonal Procrustes rotation procedure to more than two matrices, 1971. Proceedings, 79th Annual Convention, A. P. A., 81–90.
[8] Krzanowski, W. J. A comparison of some distance measures applicable to multinomial data, using a rotational fit technique.Biometrics, 1971,27, 1062–1068. · doi:10.2307/2528839
[9] Nelder, J. A. and Members of the Rothamsted Statistics Department.Genstat Reference Manual, Inter-University/Research Councils Series, Report No. 3, Second Edition. Edinburgh: Program Library Unit, Edinburgh Regional Computing Centre, 1973.
[10] Pomeroy, R. W., Williams, D. R., Harries, J. M. & Ryan, P. O. Material, measurements, jointing and tissue separation.Journal of Agricultural Science, (In press).
[11] Pomeroy, R. W., Williams, D. R., Harries, J. M. & Ryan, P. O. The use of regression equations to estimate total tissue components from observations on intact and quartered sides and partial dissection data.Journal of Agricultural Science, (In press).
[12] Schönemann, P. H. On two-sided Procrustes problems.Psychometrika, 1968,33, 19–34. · doi:10.1007/BF02289673
[13] Schönemann, P. H. & Carroll, R. M. Fitting one matrix to another under choice of a central dilation and a rigid motion.Psychometrika, 1970,35, 245–256. · doi:10.1007/BF02291266
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.